帳號:guest(3.138.137.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃偉嘉
作者(外文):Huang, Wei Chia
論文名稱(中文):利用群集分析與信號雜音比分類品質屬性
論文名稱(外文):Using Clustering Analysis and SN Ratio to Classify Quality Attributes: An Empirical Test
指導教授(中文):蘇朝墩
陳麗妃
指導教授(外文):Su, Chao Ton
Chen, Li Fei
口試委員(中文):姜台林
蕭宇翔
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034539
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:50
中文關鍵詞:服務品質顧客滿意度Kano模式群集分析信號雜音比
外文關鍵詞:customer satisfactionKano modelclustering analysisquality attribute
相關次數:
  • 推薦推薦:0
  • 點閱點閱:214
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
產品及服務的品質對顧客滿意度有直接的影響,但對於顧客及消費者而言,各項服務或產品特性所造成的感受不盡相同,因此公司企業在發展經營策略前,認知各項服務與產品特性的品質屬性(quality attribute)始終極為重要;以適當的方法判別出服務或產品特性的品質屬性不僅能夠減少企業資源的浪費、更能確保企業發展利基,甚至能夠發掘出造成差異化、吸引顧客的重要項目。在判斷產品及服務的品質屬性的方法中,Kano模式普遍受到大家的歡迎,且已被廣泛的應用在各種領域及產業上,但如何能夠快速且有效的應用Kano模式找出正確的品質屬性也引發廣泛的討論。

本研究應用資料挖礦(data mining)中的群集分析之概念並結合信號雜音比發展出一套簡單快速且具相當可靠度、用於判別Kano模式中的品質屬性的方法。利用群集分析中相似度的概念配合適當的門檻劃分做出分群,接著計算信號雜音比判斷,進一步做出確切的分類;利用本研究所建構之方法於實際案例做驗證,並比較其他針對Kano模式的品質屬性分類方法,結果顯示本研究所建構之方法可靠度優於其他方法。
Service and product quality have the most significant and direct impact on customer satisfaction. However, customers have different impressions on various service or product quality attributes. Therefore, it is essential for enterprises to fully understand the quality attributes of their service or products. This study implemented Kano’s model to evaluate the quality attributes. The concept of Kano’s two-dimensional model evaluates quality attributes with the asymmetric and nonlinear relationship. In addition, classifying quality attributes in the Kano model with typical satisfaction data is another issue that people keen to know. The main objective of this study is to identify the quality attributes in the Kano model with the relationship between the attribute performance and customer satisfaction.
This study applied the clustering analysis and signal-to-noise ratio to determine the quality attribute of service or product characteristics in the Kano model. First, the related data were collected and the similarities of attributes were calculated. Second, the thresholds to group the attributes were defined. Finally, the signal-to-noise ratio of each attribute was computed and the quality attributes were identified. The proposed approach was validated using data collected from a food and beverage industry, showing that the proposed approach performs better than the regression methods and the other methods.
目錄
【摘要】 I
【Abstract】 II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻探討 4
2.1 Kano二維品質模式 4
2.2 Kano品質屬性分類法 8
2.2.1 Kano問卷法 8
2.2.2 懲罰報酬比對分析法 12
2.2.3 其他Kano模式品質分類方法 15
2.3 群集分析 15
2.3.1 相似度計算 16
第三章 研究方法 21
3.1 建構問題並蒐集資料 21
3.2 相似度計算 22
3.3 建立分群劃分門檻 24
3.4 計算信號雜音比 25
3.5 判別品質屬性 27
第四章 個案研究 28
4.1 案例背景 28
4.2 實施過程 28
4.2.1 建構問題並蒐集資料 28
4.2.2 相似度計算 31
4.2.3 建立分群劃分門檻 33
4.2.4 計算信號雜音比 33
4.2.5 判別品質屬性 34
4.3 結果比較與分析 36
4.3.1 懲罰報酬比對分析法 36
4.3.2 其他方法 38
第五章 結論與建議 40
5.1 結論 40
5.2 未來研究方向 42
參考文獻 43
附錄一 問卷問題 45
附錄二 PRCA資料數據(Chen, 2012) 46
附錄三 Chen(2014)之資料數據 49
附錄四 混淆矩陣(confusion matrix) 50
參考文獻
Albayraka, T., Caber, M., (2013). “Penalty–Reward-Contrast Analysis: a review of its application in customer satisfaction research.” Total Quality Management, 24(11), 1288–1300
Brant, R.D. (1987). “How service marketers can identify value-enhancing service element.” Journal of Services Marketing, 2 (3), 35–41
Chen, L. F. (2012). “A novel approach to regression analysis for the classification of quality attributes in the Kano’s model: an empirical test in the food and beverage industry.” Omega-International Journal of Management Science, 40(5), 651–659
Chen, L. F. (2014). “A novel framework for customer-driven service strategies: a case study of a restaurant chain.” Tourism Management, 41, 119–128
Chen, L. F. (2015). “Exploring asymmetric effects of attribute performance on customer satisfaction using association rule method.” International Journal of Hospitality Management, 47, 54–64
Choi, S. S., Cha, S. H., Tappert, C. C., (2010). “A survey of binary similarity and distance measures.” Journal of Systemics, Cybernetics and Informatics 8(1), 43–48
Finch, H. (2005). “Comparison of distance measures in cluster analysis with dichotomous data.” Journal of Data Science, 3, 85–100
Herzberg, F. (1966). Work and the nature of Man, Co, Cleveland, OH.
Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). “Attractive quality and must-be quality.” The Journal of the Japanese Society for Quality Control , 14, 39–48
Lee M. C., Newcomb J. F. (1997). “Applying the Kano methodology to meet customer requirements: NASA's microgravity science program.” Quality management Journal, 4(3), 95–106
Lin, S. P., Yang, C. L., Chan, Y. H., & Sheu, C. (2010). “Refining Kano’s quality attributes-satisfaction model: a moderated regression approach.” International Journal of Production Economics, 126, 255–263
Löfgren, M., Witell, L., (2008). “Two decades of using Kano's theory of attractive quality: a literature review.” Quality Management Journal, 15(1), 59–75
Mikulić, J., Prebežac, D. (2011). “A critical review of techniques for classifying quality attributes in the Kano model.” Managing Service Quality, 21(1), 46–66
Schvaneveldt, S.J., Enkawa, T. and Miyakawa, M. (1991). “Consumer evaluation perspectives of service quality: evaluation factors and two-way model of quality.” Total Quality Management, 2(2), 149–161
Stevens P., Knutson B., Patton M. (1995). “DINESERV: a tool for measuring service quality in restaurants.” Cornell Hotel and Restaurant Administration Quarterly, 36(2), 56–60
Tontini, G., Søilen, K. (2013). “How do interactions of Kano model attributes affect customer satisfaction? An analysis based on psychological foundations.” Total Quality Management, 24(11), 1253–1271
Witell, L., Löfgren, M., (2007). “Classification of quality attributes.” Managing Service Quality: An International Journal, 17, 54 - 73
蘇朝墩,2009,「六標準差」,前程文化。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *