帳號:guest(3.133.126.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范文濠
作者(外文):Fan, Wen Hao
論文名稱(中文):建構分級產品之多目標生產規劃模型-以太陽能電池為例
論文名稱(外文):Constructing A Multi-Objective Production Planning Model with Graded Product in Solar Cell Industry
指導教授(中文):簡禎富
指導教授(外文):Chien, Chen Fu
口試委員(中文):許嘉裕
鄭家年
口試委員(外文):Hsu, Chia Yu
Zheng, Jia Nian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034530
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:101
中文關鍵詞:太陽能電池缺乏產品齊一性TOPSIS多目標模糊目標規劃多準則決策生產規劃
外文關鍵詞:Solar CellLack of Homogeneity in the ProductTOPSISMulti-Objective Fuzzy Goal ProgrammingMulti-Attribute Decision MakingProduction Planning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:123
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
低碳能源一直是各能源科技發展的趨勢,其中太陽能產業為台灣重要的新興產業之一。其生產規劃決策橫跨各部門,包含業務、採購、製造及產銷等決策之協調,而各部門的決策者所關注的目標不同,使得目標間彼此互斥,為一多目標決策問題。而太陽能電池製造具備缺乏產品齊一性的性質(Lack of homogeneity in the product, LHP),會因製程變異產生不同發電效率、色澤等特性,並依照其特性,進行分級(Bin),增加生產規劃上的複雜度。本研究建立太陽能電池分級產品之多目標生產規劃模型,考量產能、需求、採購及存貨限制,並提出一決策架構與步驟解決太陽能製程變異分布特性所帶來之生管、製造與產銷分配問題。本研究模型為兩階段TOPSIS多目標模糊目標規劃法(TOPSIS Multi-Objective Fuzzy Goal Programming, TOPSIS-MOFGP),透過兩階段之方法簡化多目標問題,並利用正負理想點之概念求得最接近理想點之滿意解,達到財務價值、需求滿足率、產能利用率及存貨數量各目標之最適解,以提昇太陽能電池生產規劃之決策品質。本研究以新竹某光電廠商做為實證案例,以驗證本研究效度,透過實際資料的比較結果,並建立多情境分析,提供太陽能電池廠商在不同環境之決策考量依據。
In recent years, low-carbon energy has been a trend in the development of varied energy technologies, and the solar industry is one of the important emerging industries in Taiwan. The production plan decision crosses the different department, such as sales, procurement, manufacturing, allocation, etc. The Decision Maker need to consider Multi-Attribute Decision Making. Moreover, due to the lack of homogeneity in the product, process variation affects the output distribution, solar cell will be graded and allocated based on different power efficiency, color, and other characteristics to meet customer’s various requirements. To meet customer orders, it often leads to excess inventory. Under the situation of short life cycle of solar cells, excessed stocks will increase company's costs and risks. Therefore, this study develops a two level TOPSIS Multi-Objective Fuzzy Goal Programming(TOPSIS-MOFGP). Based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ideal solution (NIS). In the proposed approach can achieve compromise solution of the problem by maximizing the profit, demand fulfill, capacity utilization and minimizing inventory. In this study, we compare the results from real-world case study, and establish the different scenario to test the model validity to provide the suggestion to Decide Maker.

目錄
目錄 vi
表目錄 ix
圖目錄 xii
第一章 緒論 1
1.1 研究背景、動機與重要性 1
1.2 研究目的 2
1.3 論文結構 2
第二章 文獻回顧 4
2.1 太陽能電池製造產業 4
2.2 生產規劃 6
2.2.1 主生產排程(Master Production Schedule, MPS) 6
2.2.2 分級產品之生產規劃 9
2.3 模糊多目標規劃(Fuzzy Goal Programming for Multi-Objective) 10
2.4 文獻回顧小結 12
第三章 研究架構 13
3.1 瞭解問題 15
3.2 界定利基 17
3.2.1 目標式 19
3.2.2 本研究限制與假定 21
3.3 架構影響關係 22
3.3.1 限制式 26
3.3.2 多目標模糊規劃模型 28
3.3.3 建立多目標層級 29
3.3.3.1 第一階段TOPSIS-MOFGP模型 30
3.3.3.2 第二階段TOPSIS-MOFGP模型 34
3.3.3.3 模型求解步驟整理 37
3.4 客觀描述感受 40
3.5 綜合判斷與主觀衡量 41
3.6 權衡與決策 42
3.6.1 參數設定之實驗設計 42
3.6.2 歷史資料之比較 43
3.6.3 情境分析 44
3.7 小規模案例 45
3.7.1 資料說明 45
3.7.2 模型求解 46
第四章 實證研究 53
4.1 瞭解問題 53
4.2 界定利基 56
4.3 架構影響關係 59
4.3.1 限制及影響關係 59
4.3.2 實證資料描述 61
4.3.3 實例分析 64
4.4 客觀敘述感受 72
4.5 綜合判斷與主觀衡量 73
4.6 權衡與決策 73
4.6.1 參數設定之實驗設計 73
4.6.2 歷史資料驗證 78
4.6.2.1 訂單需求滿足情況 79
4.6.2.2 各期存貨數量之狀態 84
4.6.3 情境分析 85
4.6.3.1 旺季 86
4.6.3.2 淡季 90
4.7 結果與討論 94
第五章 結論與後續研究方向 95
參考文獻 96

表目錄
表2.1 主生產排程之目標考量因素 8
表2.2 分級產品之生產規劃研究 10
表2.3 太陽能產業生產規劃目標與文獻回顧之設定 12
表3.1 太陽能產業生產規劃元素檢核表 16
表3.2 太陽能產業生產規劃決策定義域 18
表3.3 太陽能電池製造情境描述 44
表3.4小規模案例之訂單需求 45
表3.5 小規模之製程及晶片成本 45
表3.6 製程之產品存貨殘餘值比及平均產品銷售價格 46
表3.7產能與存貨上限 46
表3.8 第一階段目標之正負理想點 46
表3.9 第一階段距離函數之正負理想解 47
表3.10 各權重下之目標值 48
表3.11 第一階段目標之正負理想點 49
表3.12 距離函數之正負理想解 50
表3.13 第二階段各權重之滿意度函數 51
表3.14 本案例最佳解之各目標值 52
表4.1 目標層級 57
表4.2 案例公司之採購資訊(樣本資料) 61
表4.3 案例公司之製程成本(樣本資料) 61
表4.4 案例公司之製程R1之產出分佈(樣本資料) 62
表4.5案例公司之固定成本與限制值(樣本資料) 62
表4.6案例公司之訂單需求(樣本資料) 63
表4.7各庫齡產品期初存貨及對應之存貨處理成本 64
表4.8 兩階段各目標值之正負理想解 65
表4.9 第一階段各權重下之柏拉圖前緣解集合 67
表4.10 第二階段各權重值之滿意解 70
表4.11 第二階段之最適解資訊 71
表4.12 本研究各目標值 71
表4.13 各階段之權重值設定 72
表4.14 研究效度之比較 73
表4.15最大寬容值設定 74
表4.16寬容值之情境設定 74
表4.17 兩階段權重實驗因子設定 74
表4.18 實驗方案之各目標權重值 75
表4.19 各實驗結果之距離函數 值 75
表4.20各權重值方案最佳之寬容值設定 76
表4.21 篩選之方案之第一階段目標與正理想解之絕對距離值 77
表4.22本研究之參數設定 77
表4.23案例公司與研究模型之比較 78
表4.24模型最佳解與歷史資料各產品等級分佈之訂單需求滿足量 80
表4.25各階產品滿足訂單需求之比較表 81
表4.26顧客訂單示意圖 82
表4.27顧客滿足訂單需求之比較表 82
表4.28保證每筆訂單需求滿足比例之各目標值 83
表4.29 歷史資料與模型各期存貨組成數量表 84
表4.31旺季情境下各目標值 86
表4.32旺季各產品等級分佈之訂單需求滿足量 87
表4.33旺季下各階產品滿足訂單需求之比較表 88
表4.34旺季下各期生產與期初存貨銷之當期銷售量 89
表4.35淡季情境下各目標值 90
表4.36淡季各產品等級分佈之訂單需求滿足量 91
表4.37淡季下各階產品滿足訂單需求之比較表 92
表4.38淡季下各期生產與期初存貨銷之當期銷售量 93
表4.39淡季100%訂單需求滿足與模型之比較表 93


圖目錄
圖2.1 太陽能電池分類(He and Zervos, 2016)(重製) 4
圖2.2 矽晶太陽能電池基本製程(新日光,2016)(重製) 5
圖2.3 太陽能電池生產變異分佈 5
圖3.1 研究架構圖 14
圖3.2 太陽能電池製造限制允諾量與期初庫存量示意圖 22
圖3.3太陽能生產規劃問題架構 23
圖3.4 多目標規劃模型求解流程 29
圖3.5 歸屬函數(重製) 32
圖3.6 模型求解流程圖 38
圖3.7 實驗設計流程圖 43
圖3.8第一階段目標之柏拉圖前緣解集合 49
圖3.9第二階段目標之柏拉圖前緣解集合 52
圖4.1 太陽能電池生產規劃決策流程圖 54
圖4.2 太陽能電池生產規劃影響圖 55
圖4.3 太陽能電池製造分配流程概念圖 56
圖4.4 第一階段目標之柏拉圖前緣解集合 67
圖4.5第二階段目標之柏拉圖前緣解集合 70
圖4.6 篩選之方案第一階段目標柏拉圖解集合 77
圖4.7 案例公司與研究模型之目標比較 78
圖4.8 訂單需求滿足之產品等級分佈區域圖 79
圖4.9 各階產品滿足訂單需求之比較圖 81
圖4.10 滿足顧客訂單需求之比較圖 83
圖4.11 歷史資料與模型各期存貨數量變化表 84
圖4.12 旺季各等級需求滿足之區域圖 86
圖4.13 旺季下各期之存貨數量趨勢圖 88
圖4.14 旺季下各期生產與期初存貨銷之當期銷售量 89
圖4.15淡季各等級需求滿足之區域圖 90
圖4.16 淡季下各期之存貨數量趨勢圖 92
圖4.17 淡季下各期生產與期初存貨銷之當期銷售量 93
王孟傑(2014),新興能源產業年鑑,工研院IEK。
新日光能源科技股份有限公司(2016),製程簡介。上網日期:2016年10月01日。網址:http://www.nsp.com/?lang=1
簡禎富(2015),決策分析與管理,雙葉書廊,台北。
Abo-Sinna, M. A. and Amer, A. H. (2005), "Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems," Applied Mathematics and Computation, Vol. 162, No. 1, pp. 243-256.
Abo-Sinna, M. A. and Baky, I. A. (2010), "Fuzzy Goal Programming Procedure to Bilevel MultiobjectiveLinear Fractional Programming Problems," International Journal of Mathematics and Mathematical Sciences, Vol. 2010, No., pp. 1-15.
Alemany, M. M. E., Grillo, H., Ortiz, A., and Fuertes-Miquel, V. S. (2015), "A fuzzy model for shortage planning under uncertainty due to lack of homogeneity in planned production lots," Applied Mathematical Modelling, Vol. 39, No. 15, pp. 4463-4481.
Alemany, M. M. E., Lario, F. C., Ortiz, A., and Gomez, F. (2013), "Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case," Applied Mathematical Modelling, Vol. 37, No. 5, pp. 3380-3398.
Ames, B. (2014), “Changing the economics of solar cell manufacturing,” Applied Materials, Inc, Vol. 9, pp. 36-40.
As'ad, R. and Demirli, K. (2011), "A bilinear programming model and a modified branch-and-bound algorithm for production planning in steel rolling mills with substitutable demand," International Journal of Production Research, Vol. 49, No. 12, pp. 3731-3749.
Baky, I. A. and Abo-Sinna, M. A. (2013), "TOPSIS for bi-level MODM problems," Applied Mathematical Modelling, Vol. 37, No. 3, pp. 1004-1015.
Bellman, R. E. and Zadeh, L. A. (1970), "DECISION-MAKING IN A FUZZY ENVIRONMENT," Management Science Series B-Application, Vol. 17, No. 4, pp. B141-B164.
Buehlmann, U., Thomas, R. E., and Zuo, X. Q. (2011), "Cost minimization through optimized raw material quality composition," Robotics and Computer-Integrated Manufacturing, Vol. 27, No. 4, pp. 746-754.
Cheng, C. B. (2008), "Solving a sealed-bid reverse auction problem by multiple-criterion decision-making methods," Computers & Mathematics with Applications, Vol. 56, No. 12, pp. 3261-3274.
Chien, C. F., Chen, Y. J., and Peng, J. T. (2010), "Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle," International Journal of Production Economics, Vol. 128, No. 2, pp. 496-509.
Chou, C. W., Chien, C. F., and Gen, M. (2014), "A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling," IEEE Transactions on Automation Science and Engineering, Vol. 11, No. 3, pp. 692-705.
Dey, P. P., Pramanik, S., and Giri, B. C. (2014), "TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming," Journal of Industrial Engineering International, Vol. 10, No. 4, pp. 173-184.
Fahimnia, B., Luong, L. H. S., and Marian, R. M. (2006), "Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach," in: C. Ardil (eds.), Proceedings of World Academy of Science, Engineering and Technology, Vol 15, pp. 169-174.
Hatzikonstantinou, O., Athanasiou, E., and Pandelis, D. G. (2012), "Real-time production scheduling in a multi-grade PET resin plant under demand uncertainty," Computers & Chemical Engineering, Vol. 40, No., pp. 191-201.
He, X. and Zervos, H. (2016), Perovskite Photovoltaics 2016-2026:Technologies, Markets, Players. IDTechEx.
Higgins, P. and Brown, J. (1992), "Master production scheduling: a concurrent planning approach," Production Planning & Control, Vol. 3, No. 1, pp. 2–18.
Hu, Z. Y. and Hu, G. P. (2016), "A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty," International Journal of Production Economics, Vol. 180, No., pp. 198-207.
Hwang, C. L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Springer, Berlin, Heidelberg, New York.
International Renewable Energy Agency, I. (2012), "Solar Photovoltaics," Renewable Energy Technologies: Cost Analysis, Vol. 1, No. 4/5, pp.
Jamalnia, A. and Soukhakian, M. A. (2009), "A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning," Computers & Industrial Engineering, Vol. 56, No. 4, pp. 1474-1486.
Korpeoglu, E., Yaman, H., and Akturk, M. S. (2011), "A multi-stage stochastic programming approach in master production scheduling," European Journal of Operational Research, Vol. 213, No. 1, pp. 166-179.
Lai, Y. J., Liu, T. Y., and Hwang, C. L. (1994), "TOPSIS FOR MODM," European Journal of Operational Research, Vol. 76, No. 3, pp. 486-500.
Liberopoulos, G., Kozanidis, G., and Hatzikonstantinou, O. (2010), "Production scheduling of a multi-grade PET resin plant," Computers & Chemical Engineering, Vol. 34, No. 3, pp. 387-400.
Lofthouse, J., Simmons, R. T., and Yonk, R. M. (2015). Reliability of Renewable Energy: Solar. The Institute of Political Economy (IPE) at Utah State University.
Maiti, S. K. and Roy, S. K. (2016), "Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach," Journal of Industrial Engineering International, Vol. 12, No. 3, pp. 287-298.
Meyr, H. and Mann, M. (2013), "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Vol. 229, No. 3, pp. 718-731.
Nixon, J. D., Dey, P. K., Davies, P. A., Sagi, S., and Berry, R. F. (2014), "Supply chain optimisation of pyrolysis plant deployment using goal programming," Energy, Vol. 68, No., pp. 262-271.
Pastor, R., Altimiras, J., and Mateo, M. (2009), "Planning production using mathematical programming: The case of a woodturning company," Computers & Operations Research, Vol. 36, No. 7, pp. 2173-2178.
Ponsignon, T. and Monch, L. (2012), "Heuristic approaches for master planning in semiconductor manufacturing," Computers & Operations Research, Vol. 39, No. 3, pp. 479-491.
Pramanik, S. (2015), "Multilevel Programming Problems with Fuzzy Parameters: A Fuzzy Goal Programming Approach," International Journal of Computer Applications, Vol. 122, No. 21, pp. 34-41.
Pramanik, S. and Dey, P. P. (2011), "Quadratic bi-level programming problem based on fuzzy goal programming approach," International Journal of Software Engineering & Applications, Vol. 2, No. 4, pp. 41-59.
Shih, H. S., Lai, Y. J., and Lee, E. S. (1996), "Fuzzy approach for multi-level programming problems," Computers & Operations Research, Vol. 23, No. 1, pp. 73-91.
da Silva, A. F. and Marins, F. A. S. (2014), "A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill," Energy Economics, Vol. 45, No., pp. 196-204.
Soares, M. M. and Vieira, G. E. (2009), "A new multi-objective optimization method for master production scheduling problems based on genetic algorithm," International Journal of Advanced Manufacturing Technology, Vol. 41, No. 5-6, pp. 549-567.
Su, Y. S. (2013), "Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan," International Journal of Photoenergy, Vol. 2013, p. 11.
Ueno, N., Kadomoto, K., Hasuike, T., and Okuhara, K. (2012), "A Two Stage Solution Procedure for Production Planning System with Advance Demand Information," Journal of Advanced Mechanical Design Systems and Manufacturing, Vol. 6, No. 5, pp. 633-646.
Wang, H. F., Sung, M. P., and Hsu, H. W. (2016), "Complementarity and substitution of renewable energy in target year energy supply-mix plannin-in the case of Taiwan," Energy Policy, Vol. 90, No., pp. 172-182.
Wang, R. C. and Liang, T. F. (2005), "Aggregate production planning with multiple fuzzy goals," International Journal of Advanced Manufacturing Technology, Vol. 25, No. 5-6, pp. 589-597.
Zhao, Z. Y., Ball, M. O., and Kotake, M. (2005), "Optimization-based available-to-promise with multi-stage resource availability," Annals of Operations Research, Vol. 135, No. 1, pp. 65-85.
Zheng, J. N. and Chien, F. C. (2013). Master Production Schedule and System for Excelling Enterprise Resources (SEER) in the LED Industry, 2013 IEEE International Conference on Automation Science and Engineering (CASE).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *