帳號:guest(3.149.247.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張詣昀
作者(外文):Chang, Yi-Yun
論文名稱(中文):衰退型多態流量網路於d容量水準下之計算及可靠度評估
論文名稱(外文):Calculating the Deterioration-effect Multi-state Flow Network with Capacity Level d and Evaluate Reliability
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):陳光辰
黃佳玲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034527
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:43
中文關鍵詞:多態流量網路最小路徑衰退效應流量守恆網路可靠度不相交乘積之和
外文關鍵詞:Multi-state flow networkMinimal pathDeterioration effectFlow conservation lawNetwork reliabilitySum-of-Disjoint Products
相關次數:
  • 推薦推薦:0
  • 點閱點閱:216
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生活周圍中,有許多系統都運用了多態網路架構。例如:訊號傳輸、電力傳輸和運輸系統等等。傳統的多態網路中,起點的流量和終點的流量相同,然而有些流量在傳送過程中會漸漸流失,因此率退效應的網路系統被提出[1],以使得更貼近實際的各種情形。
可靠度則是幫助評估網路系統的重要指標。該指標是成功將物品或流量從起點送到終點的機率值。為求出可靠度必須先求得該網路系統的解,方可再經由該解來求得可靠度評估。
本文將提出評估衰退型多態網路可靠度的方法,並提出兩種不同情況下的求解方法: 單一最小路徑和衰退效應結點順序窮舉法。其中衰退效應結點順序窮舉法利用葉維彰博士提出的結點順序窮舉法[2]修改後產生。單一最小路徑的運用像是有時效限制的配送系統,例如: 生鮮食品的配送,運用範圍雖然較小,但對於送貨到府越來越盛行的現在也是相當實用。衰退效應結點順序窮舉法的運用相對較廣泛,有衰弱效應的網路都可以用此求解。
本文先求出衰退型網路能力d最小路徑解後,再利用葉維彰博士提出的改良不相交乘積之和 (iSDP) [3]求出可靠度。因此,透過本研究之演算法可正確估算衰退型多態網路的可靠度,進而了解該網路系統的績效。
Life around, there are many systems use a multi-state network. For example: signal transmission, power transmission and transportation systems, etc. In traditional multi-state network, the flow value will the same form source node to sink node, but some things will lost the flow value during transmission gradually, so deterioration-effect network systems been proposed [1], to make more realistic variety of situations.
The reliability is an important indicator in the network system, the success probability of transmission that from source node to sink node. To determine the reliability of the network system must obtain the solutions first, and the solutions can calculated the reliability of this network system.
This paper will present algorithms of calculate the deterioration-effect multi-state network reliability, and the propose methods for solving two different situations: single-MP and NSIEMde (the node-based sequential implicit enumeration method under deterioration-effect). The NSIEMde is generated from NSIEM that Dr.Yeh. proposed [2]. Single-minimal path effective use of imprescriptible system, such as: fresh food transport, is quite practical in the more and more popular for delivery to door. NSIEMde, have deterioration-effects of multi-state network can be used to solve.
This study first determine the deterioration-effect minimum path of capacity level d, and then use improved sum-of-disjoint products (iSDP) Dr.Yeh. proposed [3] to calculated reliability. Therefore, this study by the algorithm can correctly estimate the deterioration-effect multi-state network reliability in order to understand the performance of the network system.
Abstract I
中文摘要 III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement and Objectives 1
1.3 Overview of This Thesis 2
Chapter 2 Literature Review 3
2.1 Network Reliability 3
2.2 Multi-state Flow Network (MFN) 4
2.3 Deterioration-effect Multi-state Flow Network (MFNde) 4
Chapter 3 Research Methodology 6
3.1 Notations and Assumptions 6
3.1.1 Acronyms 6
3.1.2 Notations 6
3.1.3 Nomenclature 9
3.1.4 Assumptions 11
3.2 Theorems and lemmas 11
3.3 Algorithms 17
3.3.1 Single MP 17
3.3.2 NSIEMde 19
3.3.3 Improved SDP 22
Chapter 4 Illustrative Example 23
4.1 Single MP 25
4.2 NSIEMde 27
Chapter 5 Conclusion and Future Research 39
5.1 Conclusion 39
5.2 Future Research 39
References 41
1. Yeh, W.-C., Evaluating the reliability of a novel deterioration-effect multi-state flow network. Information Sciences, 2013. 243: p. 75-85.
2. Yeh, W.-C., A Novel Node-based Sequential Implicit Enumeration Method for finding all d-MPs in a Multistate Flow Network.
3. Yeh, W.-C., An Improved Sum-of-Disjoint-Products Technique for Symbolic Multi-state Flow Network Reliability.
4. Abraham, J.A., An Improved Algorithm for Network Reliability. Reliability, IEEE Transactions on, 1979. R-28(1): p. 58-61.
5. Aven, T., Reliability Evaluation of Multistate Systems with Multistate Components. Reliability, IEEE Transactions on, 1985. R-34(5): p. 473-479.
6. Aven, T., Availability evaluation of oil/gas production and transportation systems. Reliability Engineering, 1987. 18(1): p. 35-44.
7. Aven, T., Some considerations on reliability theory and its applications. Reliability Engineering & System Safety, 1988. 21(3): p. 215-223.
8. Bryant, R.E., Graph-Based Algorithms for Boolean Function Manipulation. Computers, IEEE Transactions on, 1986. C-35(8): p. 677-691.
9. Colbourn, C.J., The Combinatorics of Network Reliability. 1987: Oxford University Press, Inc. 176.
10. Heidtmann, K., Statistical Comparison of Two Sum-of-Disjoint-Product Algorithms for Reliability and Safety Evaluation, in Computer Safety, Reliability and Security, S. Anderson, M. Felici, and S. Bologna, Editors. 2002, Springer Berlin Heidelberg. p. 70-81.
11. Hudson, J.C. and K.C. Kapur, Reliability Bounds for Multistate Systems with Multistate Components. Operations Research, 1985. 33(1): p. 153-160.
12. Janan, X., On Multistate System Analysis. Reliability, IEEE Transactions on, 1985. R-34(4): p. 329-337.
13. Janan, X., New approach for multistate systems analysis. Reliability Engineering, 1985. 10(4): p. 245-256.
14. Lee, S.H., Reliability Evaluation of a Flow Network. Reliability, IEEE Transactions on, 1980. R-29(1): p. 24-26.
15. Levitin, G., Reliability of multi-state systems with common bus performance sharing. IIE Transactions, 2011. 43(7): p. 518-524.
16. Lin, Y.-K., A method to evaluate routing policy through p minimal paths for stochastic case. Information Sciences, 2010. 180(23): p. 4595-4605.
17. Lin, Y.-K., On performance evaluation for a multistate network under spare routing. Information Sciences, 2012. 203(0): p. 73-82.
18. Lin, Y.-K. and C.-T. Yeh, Computer network reliability optimization under double-resource assignments subject to a transmission budget. Information Sciences, 2011. 181(3): p. 582-599.
19. Samad, M.A., An efficient algorithm for simultaneously deducing minimal paths as well as cuts of a communication network. Microelectronics Reliability, 1987. 27(3): p. 437-441.
20. Shier, D.R., Network reliability and algebraic structures. 1991: Clarendon Press. 144.
21. Wei-Chang, Y., A revised layered-network algorithm to search for all d-minpaths of a limited-flow acyclic network. Reliability, IEEE Transactions on, 1998. 47(4): p. 436-442.
22. Wei-Chang, Y., A Greedy Branch-and-Bound Inclusion-Exclusion Algorithm for Calculating the Exact Multi-State Network Reliability. Reliability, IEEE Transactions on, 2008. 57(1): p. 88-93.
23. Wei-Chang, Y., A Sequential Decomposition Method for Estimating Flow in a Multi-Commodity, Multistate Network. Reliability, IEEE Transactions on, 2011. 60(3): p. 612-621.
24. Wei-Chang, Y. and Y. Yuan-Ming, A Novel Label Universal Generating Function Method for Evaluating the One-to-all-Subsets General Multistate Information Network Reliability. Reliability, IEEE Transactions on, 2011. 60(2): p. 470-478.
25. Wei-Jenn, K. and W. Sheng-De, Reliability evaluation for distributed computing networks with imperfect nodes. Reliability, IEEE Transactions on, 1997. 46(3): p. 342-349.
26. Yeh, W.-C., A simple algorithm to search for all d-MPs with unreliable nodes. Reliability Engineering & System Safety, 2001. 73(1): p. 49-54.
27. Yeh, W.-C., Search for MC in modified networks. Computers & Operations Research, 2001. 28(2): p. 177-184.
28. Yeh, W.-C., A simple approach to search for all d-MCs of a limited-flow network. Reliability Engineering & System Safety, 2001. 71(1): p. 15-19.
29. Yeh, W.-C., Search for all d-Mincuts of a limited-flow network. Computers & Operations Research, 2002. 29(13): p. 1843-1858.
30. Yeh, W.-C., Search for all MCs in networks with unreliable nodes and arcs. Reliability Engineering & System Safety, 2003. 79(1): p. 95-101.
31. Yeh, W.-C., An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal paths. Reliability Engineering & System Safety, 2007. 92(2): p. 260-268.
32. Yeh, W.C., A Simple Method to Verify All d-Minimal Path Candidates of a Limited-Flow Network and its Reliability. The International Journal of Advanced Manufacturing Technology, 2002. 20(1): p. 77-81.
33. Yeh, W.C., A novel method for the network reliability in terms of capacitated-minimal-paths without knowing minimal-paths in advance. Journal of the Operational Research Society, 2005. 56: p. 1235-1240.
34. 林伶恩, Reliability Evaluation of Multi-State Flow Network with Time Constraints. 2012, 國立清華大學.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *