帳號:guest(18.117.229.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴閔揚
作者(外文):Lai, Jeff
論文名稱(中文):多目標基因演算法應用於混合流程型生產排程問題
論文名稱(外文):Multi-Objective Genetic Algorithm for Hybrid Flow Shop Scheduling Problem
指導教授(中文):林則孟
口試委員(中文):姚銘忠
葉維彰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034526
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:多目標基因演算法混合流程型生產排程問題最佳運算資源分配法
外文關鍵詞:MOGAHFSSPMOCBA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:392
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究針對特殊混合流程型生產系統之短期生產計劃中的生產排程進行訂單的指派規劃,其規劃為將訂單指派到各站適合的機台群。本研究主要探究三生產站,每站包含多種機台群,每機台群包含一至多台的完全相同平行機台,並且考量機台在加工不同種類產品時會有一整備時間(Setup time)。各種產品在各站並非所有機台群皆可進行加工,因此,在規劃時就必須全盤考量各產品對於各站機台群選擇的限制。綜觀以上特性,當訂單量愈大,將會使得指派規劃相當複雜和困難;若是指派不適當,將導致生產系統之產能無法有效利用。
本研究之主要瓶頸站為B站,該站之生產最耗時,且其擁有的機台數量亦最多,為整條產線的資本支出之重點。本研究採用Pareto Optimality的概念將B站的機台平均利用率與訂單的平均流程時間做為績效指標進行同時考量。本研究為一考慮多生產站、多機台型、多產品的訂單指派規劃,研究方法為利用模擬軟體在考量所有機台、產品、訂單等資訊後,建構一模擬模式,使該模式符合本研究之生產系統。接著,在面臨可行解空間過大時,進一步設計多目標基因演算法(Multi-Objective Genetic Algorithm, MOGA)進行可行解域中最佳方案的搜尋;而因應機台的加工時間具有隨機性之情況,則需經由多次的抽樣來縮減變異,此將造成模擬時間的增加,因此,本研究將利用多目標最佳運算資源分配法(Multi-objective Optimal Computing Budget Allocation, MOCBA)來有效地提升模擬效率。最後,本研究針對所使用之模擬最佳化方法進行參數分析,希望藉此提升模擬之效率與Pareto set之品質;另外,本研究亦比較兩種多目標基因演算法(NSGA-II & SPEA)分別結合MOCBA在求解此問題時的Diversity metric與模擬效率,研究結果發現,當使用NSGA-II結合MOCBA可得較佳之結果。
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究步驟與方法 4
第二章 文獻回顧 5
2.1 混合流程型生產排程問題 5
2.2 多目標模擬最佳化 9
2.2.1 模擬最佳化方法 9
2.2.2 多目標最佳化問題 10
2.2.3 多目標基因演算法 11
2.2.4 多目標最佳運算資源分配 13
第三章 問題定義與分析 16
3.1 混合流程型生產排程問題 16
3.2 問題描述 17
3.2.1 訂單資訊 17
3.2.2 產品資訊 18
3.2.3 機台配置資訊 19
3.3 問題定義與分析 20
第四章 多目標基因演算法 25
4.1 模擬模式的建構 25
4.1.1 模擬模式建構的目的 25
4.1.2 模擬模式之範圍與細緻度 25
4.1.3 模擬工具 26
4.1.4 混合流程型生產系統模擬模式的建立 26
4.2 多目標基因演算法處理混合流程型生產排程問題 30
4.2.1 NSGA-II建構模式 30
4.2.2 SPEA建構模式 36
4.3 多目標基因演算法結合MOCBA之方法論 38
4.3.1 MOCBA方法論 39
4.3.2 多目標基因演算法結合MOCBA之流程 41
第五章 實驗與參數分析 45
5.1 考慮隨機性 45
5.1.1 考慮加工時間具有隨機性 45
5.2 MOCBA與傳統方法之比較 49
5.2.1 實驗結果與分析 50
5.3 NSGA-II與SPEA之比較 52
5.3.1 實驗結果與分析 53
5.4 NSGA-II與MOCBA之參數分析 55
5.4.1 NSGA-II實驗結果與分析 55
5.4.2 MOCBA實驗結果與分析 58
5.5 訂單量情境分析 61
5.5.1 實驗結果與分析 62
5.6 不同決策考量分析 64
5.6.1 實驗結果與分析 64
第六章 結論與建議 67
6.1 結論 67
6.2 建議 69
參考文獻 70
附錄 74
林則孟,「系統模擬─理論與應用」,滄海書局,2001。
林則孟,「生產計畫與管理」,華泰文化,2012。
Akkerman, R., D. P. Van Donk and G. Gaalman, “Influence of capacity- and time- constrained intermediate storage in two-stage food production systems”, International Journal of Production Research, 2007; 45(13):2955–2973.
Allahverdi, A. and F. S. Al-Anzi, “Scheduling multi-stage parallel-processor services to minimize average response time”, Journal of the Operational Research Society, 2006; 57, 101–110.
Allaoui, H. and A. Artiba, “Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints”, Computers & Industrial Engineering, 2004; 47(4):431–450.
Carson, J. S., “AutoStat: output statistical analysis for AutoMod users”, Proceedings of the 1996 Winter Simulation Conference, 492–499, 1996.
Chen, C. H. and L. H. Lee, “Stochastic Simulation Optimization: An Optimal Computing Budget Allocation”, 2010.
Chew, E. P., L. H. Lee, S. Teng and C. W. Koh, “Differentiated service inventory optimization using nested partitions and MOCBA”, Computers & Operations Research, 2009; 1703–1710.
Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, 2002; 6(2):182–197.
Fonseca, C. M. and P. J. Fleming, “Multiobjective genetic algorithms”, In: IEE colloquium on ‘Genetic Algorithms for Control Systems Engineering (Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993.
Garey, M. R. and D. S. Johnson, “Computers and intractability: a guide to the theory of NP-completeness”, San Francisco: Freeman, 1979.
Guinet, A., M. M. Solomon, P. K. Kedia and A. Dussauchoy, “A computational study of heuristics for two-stage flexible flowshops”, International Journal of Production Research, 1996; 34(5):1399–1415.
Gupta, J. N. D., A. M. A. Hariri and C. N. Potts, “Scheduling a two-stage hybrid flow shop with parallel machines at the first stage”, Annals of Operations Research, 1997; 69:171–191.
Henderson, S. G. and B. L. Nelson, “Handbooks in Operations Research and Management Science: Simulation”, Volume 13, 2006.
Horn, J., N. Nafpliotis and D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization”, In: Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 27–29 June, 1994. Orlando, FL, USA: IEEE; 1994.
Jenabi, M., S. M. T. F. Ghomi, S. A. Torabi and B. Karimi, “Two hybrid meta-heuristics for the finite horizon ELSP in flexible flow lines with unrelated parallel machines”, Applied Mathematics and Computation, 2007; 186(1):230–245.
Kadipasaoglu, S. N., W. Xiang and B. M. Khumawala, “A comparison of sequencing rules in static and dynamic hybrid flow systems”, International Journal of Production Research, 1997; 35(5):1359–1384.
Kim, J. S., S. H. Kang and S. M. Lee, “Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each stage”, Omega, International Journal of Management Science, 1997; 25(5): 547–555.
Kis, T. and E. Pesch, “A review of exact solution methods for the non-preemptive multiprocessor flowshop problem”, European Journal of Operational Research, 2005; 164(3):592–608.
Konak, A., D. W. Coit and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial”, Reliability Engineering and System Safety, 2006; 91:992–1007.
Lee, L. H., E. P. Chew, S. Teng and Y. Chen, “Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem”, European Journal of Operational Research, 2008; 189(2):476–491.
Leon, V. J., Ramamoorthy, B., “An adaptable problem-space-based search method for flexible flow line scheduling”, IIE Transactions, 1997; 29(2):115–125.
Linn, R. and W. Zhang, “Hybrid flow shop scheduling: a survey”, Computers & Industrial Engineering, 1999; 37(1–2):57–61.
Liu, C. Y. and S. C. Chang, “Scheduling flexible flow shops with sequence-dependent setup effects”, IEEE Transactions on Robotics and Automation, 2000; 16:408–419.
Murata, T. and H. Ishibuchi, “MOGA: multi-objective genetic algorithms”, In: Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, 29 November–1 December, 1995. Perth, WA, Australia: IEEE; 1995.
Quadt, D. and H. Kuhn, “A taxonomy of flexible flow line scheduling procedures”, European Journal of Operational Research, 2007; 178(3):686–698.
Ribas, I., R. Leisten and J. M. Framin ̃an, “Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective”, Computers & Operations Research, 2010; 1439–1454.
Salvador, M. S., “A solution to a special class of flow shop scheduling problems”, In: Elmaghraby SE, editor. Symposium on the theory of scheduling and its applications. Berlin: Springer, 1973. 83–91.
Santos, D. L., J. L. Hunsucker and D. E. Deal, “Global lower bounds for flow shops with multiple processors”, European Journal of Operational Research, 1995; 80(1):112–120.
Schaffer, J. D., “Multiple objective optimization with vector evaluated genetic algorithms”, In: Proceedings of the international conference on genetic algorithm and their applications, 1985.
Srinivas, N. and K. Deb, “Multiobjective optimization using nondominated sorting in genetic algorithms”, Journal of Evolutionary Computation, 1994; 2(3):221–248.
Tang, L. X. and Y. Y. Zhang, “Heuristic combined artificial neural networks to schedule hybrid flow shop with sequence dependent setup times”, Advances in Neural Networks – ISNN 2005, Part 1, Proceedings, 2005; 3496:788–793.
Uetake, T., H. Tsubone and M. Ohba, “A production scheduling system in a hybrid flow shop”, International Journal of Production Economics, 1995; 41(1–3):395–398.
Vignier, A., J. C. Billaut and C. Proust, “Hybrid flow shop scheduling problems: state of the art Rairo-Recherche Operationnelle-Operations Research”, 1999; 33(2):117–183.
Zitzler, E., M. Laumanns and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm”, Swiss Federal Institute Techonology: Zurich, Switzerland, 2001.
Zitzler, E. and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach”, IEEE Transactions on Evolutionary Computation, 1999; 3(4):257–271.
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *