|
林則孟,「系統模擬─理論與應用」,滄海書局,2001。 林則孟,「生產計畫與管理」,華泰文化,2012。 Akkerman, R., D. P. Van Donk and G. Gaalman, “Influence of capacity- and time- constrained intermediate storage in two-stage food production systems”, International Journal of Production Research, 2007; 45(13):2955–2973. Allahverdi, A. and F. S. Al-Anzi, “Scheduling multi-stage parallel-processor services to minimize average response time”, Journal of the Operational Research Society, 2006; 57, 101–110. Allaoui, H. and A. Artiba, “Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints”, Computers & Industrial Engineering, 2004; 47(4):431–450. Carson, J. S., “AutoStat: output statistical analysis for AutoMod users”, Proceedings of the 1996 Winter Simulation Conference, 492–499, 1996. Chen, C. H. and L. H. Lee, “Stochastic Simulation Optimization: An Optimal Computing Budget Allocation”, 2010. Chew, E. P., L. H. Lee, S. Teng and C. W. Koh, “Differentiated service inventory optimization using nested partitions and MOCBA”, Computers & Operations Research, 2009; 1703–1710. Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, 2002; 6(2):182–197. Fonseca, C. M. and P. J. Fleming, “Multiobjective genetic algorithms”, In: IEE colloquium on ‘Genetic Algorithms for Control Systems Engineering (Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993. Garey, M. R. and D. S. Johnson, “Computers and intractability: a guide to the theory of NP-completeness”, San Francisco: Freeman, 1979. Guinet, A., M. M. Solomon, P. K. Kedia and A. Dussauchoy, “A computational study of heuristics for two-stage flexible flowshops”, International Journal of Production Research, 1996; 34(5):1399–1415. Gupta, J. N. D., A. M. A. Hariri and C. N. Potts, “Scheduling a two-stage hybrid flow shop with parallel machines at the first stage”, Annals of Operations Research, 1997; 69:171–191. Henderson, S. G. and B. L. Nelson, “Handbooks in Operations Research and Management Science: Simulation”, Volume 13, 2006. Horn, J., N. Nafpliotis and D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization”, In: Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 27–29 June, 1994. Orlando, FL, USA: IEEE; 1994. Jenabi, M., S. M. T. F. Ghomi, S. A. Torabi and B. Karimi, “Two hybrid meta-heuristics for the finite horizon ELSP in flexible flow lines with unrelated parallel machines”, Applied Mathematics and Computation, 2007; 186(1):230–245. Kadipasaoglu, S. N., W. Xiang and B. M. Khumawala, “A comparison of sequencing rules in static and dynamic hybrid flow systems”, International Journal of Production Research, 1997; 35(5):1359–1384. Kim, J. S., S. H. Kang and S. M. Lee, “Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each stage”, Omega, International Journal of Management Science, 1997; 25(5): 547–555. Kis, T. and E. Pesch, “A review of exact solution methods for the non-preemptive multiprocessor flowshop problem”, European Journal of Operational Research, 2005; 164(3):592–608. Konak, A., D. W. Coit and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial”, Reliability Engineering and System Safety, 2006; 91:992–1007. Lee, L. H., E. P. Chew, S. Teng and Y. Chen, “Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem”, European Journal of Operational Research, 2008; 189(2):476–491. Leon, V. J., Ramamoorthy, B., “An adaptable problem-space-based search method for flexible flow line scheduling”, IIE Transactions, 1997; 29(2):115–125. Linn, R. and W. Zhang, “Hybrid flow shop scheduling: a survey”, Computers & Industrial Engineering, 1999; 37(1–2):57–61. Liu, C. Y. and S. C. Chang, “Scheduling flexible flow shops with sequence-dependent setup effects”, IEEE Transactions on Robotics and Automation, 2000; 16:408–419. Murata, T. and H. Ishibuchi, “MOGA: multi-objective genetic algorithms”, In: Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, 29 November–1 December, 1995. Perth, WA, Australia: IEEE; 1995. Quadt, D. and H. Kuhn, “A taxonomy of flexible flow line scheduling procedures”, European Journal of Operational Research, 2007; 178(3):686–698. Ribas, I., R. Leisten and J. M. Framin ̃an, “Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective”, Computers & Operations Research, 2010; 1439–1454. Salvador, M. S., “A solution to a special class of flow shop scheduling problems”, In: Elmaghraby SE, editor. Symposium on the theory of scheduling and its applications. Berlin: Springer, 1973. 83–91. Santos, D. L., J. L. Hunsucker and D. E. Deal, “Global lower bounds for flow shops with multiple processors”, European Journal of Operational Research, 1995; 80(1):112–120. Schaffer, J. D., “Multiple objective optimization with vector evaluated genetic algorithms”, In: Proceedings of the international conference on genetic algorithm and their applications, 1985. Srinivas, N. and K. Deb, “Multiobjective optimization using nondominated sorting in genetic algorithms”, Journal of Evolutionary Computation, 1994; 2(3):221–248. Tang, L. X. and Y. Y. Zhang, “Heuristic combined artificial neural networks to schedule hybrid flow shop with sequence dependent setup times”, Advances in Neural Networks – ISNN 2005, Part 1, Proceedings, 2005; 3496:788–793. Uetake, T., H. Tsubone and M. Ohba, “A production scheduling system in a hybrid flow shop”, International Journal of Production Economics, 1995; 41(1–3):395–398. Vignier, A., J. C. Billaut and C. Proust, “Hybrid flow shop scheduling problems: state of the art Rairo-Recherche Operationnelle-Operations Research”, 1999; 33(2):117–183. Zitzler, E., M. Laumanns and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm”, Swiss Federal Institute Techonology: Zurich, Switzerland, 2001. Zitzler, E. and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach”, IEEE Transactions on Evolutionary Computation, 1999; 3(4):257–271.
|