帳號:guest(18.218.221.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂厚昆
論文名稱(中文):求解分量最佳化問題之直接搜尋法架構 : 理論與應用
論文名稱(外文):A DIRECT SEARCH FRAMEWORK FOR QUANTILE-BASED OPTIMIZATION: THEORY AND APPLICATIONS
指導教授(中文):張國浩
口試委員(中文):吳建瑋
胡政宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034516
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:48
中文關鍵詞:分量直接搜尋法
外文關鍵詞:Stochastic Nelder-Mead simplex methodquantiledirect-search method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:366
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
在隨機環境下,風險管理能極小化決策所造成之不利趨勢。分量(Quantile)為風險管理中重要的績效指標。本研究發展了一新的方法論Stochastic Nelder-Mead Simplex Method for Quantile Optimization (SNM-Q)用以處理在隨機環境下以分量為績效指標的最佳化問題。SNM-Q以penalty function method為基礎同樣能處理具限制式的問題。本研究證明了SNM-Q在一般性的條件下皆具有收斂性,一系列系統性的數值實驗顯示SNM-Q可有效的處理隨機環境下的分量最佳化問題,值得進一步研究。
Risk management aims to minimize the downside of decisions made in stochastic environments. Quantile is the most popular metrics used in risk management. In this paper, we present a newly-developed methodology, called Stochastic Nelder-Mead Simplex Method for Quantile Optimization (SNM-Q), that can handle quantile-based stochastic optimization problems. We also present SNM-Q based on penalty function method that can solve problems with constraints. An extensive numerical study shows that SNM-Q can efficiently and effectively solve the problem and thus is worth further investigation.
目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 4
二、 文獻探討 7
2.1 模擬最佳化(SIMULATION OPTIMIZATION) 7
2.2 分量研究 8
三、 問題定義 11
四、 SNM-Q演算法 12
4.1分量估計 13
4.2無限制式問題之架構 16
4.2.1 SNM-Q之主架構 16
4.2.2 分量之樣本抽樣計畫 17
4.2.3 搜尋架構 19
4.3具限制環境之架構 23
4.3.1 Penalty Function Method 24
五、 數值實驗 27
5.1 無限制式數值研究 27
5.1.1 測試函數 27
5.1.2 比較指標 29
5.1.3 數值結果 29
5.2 具限制式數值研究 34
5.2.1 測試問題 34
5.2.2 數值結果 38
六、 個案研究 40
6.1 送報生問題 40
6.2 多產品組裝問題 41
七、 結論與未來研究 44
參考文獻 45

參考文獻
Anderson, E.J., Ferris, M.C., 2001. A direct search algorithm for optimization with noisy function evaluations. SIAM Journal on Optimization 11(3), 837–857.
Angun, E., Kleijnen, J., 2010. An asymptotic test of optimality conditions in multiresponse simulation-based optimization. INFORMS Journal on Computing.
Batur, D., Choobineh, F., 2010. A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764–772.
Banks, J. (Ed.), 1998. Handbook of Simulation. John Wiley and Sons, New York.
Barton, R.R., Ivey, J.S., 1996. Nelder–Mead simplex modifications for simulation optimization. Management Science 42(7), 954–973.
Bekki, J. M., Fowler, J. W., Mackulak, G. T., & Kulahci, M., 2009. Simulation-based cycle-time quantile estimation in manufacturing settings employing non-FIFO dispatching policies. Journal of Simulation, 3(2), 69–83.
Bickel, P.J., Lehmann, E.L., 1975. Descriptive statistics for nonparametric models. II. Location. Annals of Statistics 3, 1045–1069.
Brodin, E., 2007. Extreme Value Statistics and Quantile Estimation with Applications in Finance and Insurance. Ph.D. Thesis, Chalmers University of Technology and University of Goteborg.
Chang, K. H., 2012. Stochastic Nelder–Mead simplex method–A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684–694.
Chang, K. H., 2014. A Direct Search Method for Quantile-based Simulation Optimization. (Working paper)
Chang, K. H., 2014. Extending Stochastic Nelder-Mead Simplex Method for Quantile-based Simulation Optimization with Inequality Constraints. (Working paper)
Dai, L. 1996. Convergence properties of ordinal comparison in the simulation of discrete event dynamic systems. Journal of Optimization Theory and Applications 91(2), 363–388.
Dielman, T., C. Lowrt, R. Pfaffenberger. 1994. A comparison of quantile estimators. Communications in Statistics-Simulation and Computation 23(2), 355–371.
Floudas, C. A., & Pardalos, P. M., 1990. A collection of test problems for constrained global optimization algorithms 455. Springer.
Fu, M.C., 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14(3), 192–227.
Fu, M.C., 2006. Gradient estimation. In: Henderson, S.G., Nelson, B.L. (Eds.), Handbooks in Operations Research and Management Science, Simulation, 13. Elsevier, Amsterdam, 75–616 (Chapter 19).
Hampel, F.R., 1968. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California, Berkeley.
Harrell, F.E., Davis, C.E., 1982. A new distribution-free quantile estimator. Biometrika 69(3), 635–640.
Hooke, R., Jeeves, T.A., 1961. Direct search solution of numerical and statistical problems. Journal of the ACM 8(2), 212–229.
Hong, L. J., 2009. Estimating quantile sensitivities. Operations research, 57(1), 118–130.
Huber, P.J., 1964. Robust estimation of location parameters. Annals of Mathematical Statistics 35(1), 73–101.
Humphrey, D.G., Wilson, J.R., 2000. A revised simplex search procedure for stochastic simulation response surface optimization. INFORMS Journal on Computing 12(4), 272–283.
Kaigh, W.D., P.A. Lachenbruch. 1982. A generalized quantile estimator. Communications in Statistics-Theory and Methods 11(19), 2217–2238.
Kleijnen, J. P., Pierreval, H., & Zhang, J., 2011. Methodology for determining the acceptability of system designs in uncertain environments. European Journal of Operational Research, 209(2), 176–183.
Kiefer, J., Wolfowitz, J., 1952. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics 23(3), 462–466.
Kolda, T.G., Lewis, R.M., Torczon, V., 2003. Optimization by direct search methods: new perspectives on some classical and modern methods. SIAM Review 45(3), 385–482.
More, J.J., Garbow, B.S., Hillstrom, K.E., 1981. Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7(1), 17–41.
Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2009. Response Surface Methodology-Process and Product Optimization Using Designed Experiments. John Wiley and Sons, New York.
Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. The Computer Journal 7(4), 308–313.
Schwefel, H. P. P., 1993. Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc..
Serfling, R.J., 1980. Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York.
Shang, Y.-W., Qiu, Y.-H., 2006. A note on the extended Rosenbrock function. Evolutionary Computation 14(1), 119–126.
Shapiro, A., D. Dentcheva, A. Ruszczy´nski. 2009. Lectures on Stochastic Programming: Modeling and Theory. SIAM-Society for Industrial and Applied Mathematics.
Spall, J.C., 2003. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley and Sons, New York.
Spendley, W., Hext, G.R., Himsworth, F.R., 1962. Sequential application of simplexdesigns in optimization and evolutionary operation. Technometrics 4(4), 441–461.
Swann, W.H., 1972. Direct search methods. In: Murray, W. (Ed.), Numerical Methods for Unconstrained Optimization. Academic Press, London.
Tukey, J.W., 1960. A survey of sampling from contaminated distributions. In: Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B. (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, CA, 448–485.
Tekin, E., Sabuncuoglu, I., 2004. Simulation optimization: a comprehensive review on theory and applications. IIE Transactions 36(11), 1067–1081.
Wang, I.J., Spall, J.C., 2003. Stochastic optimization with inequality constraints using simultaneous perturbations and penalty functions. In: Proceedings of IEEE Conference on Decision and Control, Maui, HI, 3808–3813
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *