|
參考文獻 Anderson, E.J., Ferris, M.C., 2001. A direct search algorithm for optimization with noisy function evaluations. SIAM Journal on Optimization 11(3), 837–857. Angun, E., Kleijnen, J., 2010. An asymptotic test of optimality conditions in multiresponse simulation-based optimization. INFORMS Journal on Computing. Batur, D., Choobineh, F., 2010. A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764–772. Banks, J. (Ed.), 1998. Handbook of Simulation. John Wiley and Sons, New York. Barton, R.R., Ivey, J.S., 1996. Nelder–Mead simplex modifications for simulation optimization. Management Science 42(7), 954–973. Bekki, J. M., Fowler, J. W., Mackulak, G. T., & Kulahci, M., 2009. Simulation-based cycle-time quantile estimation in manufacturing settings employing non-FIFO dispatching policies. Journal of Simulation, 3(2), 69–83. Bickel, P.J., Lehmann, E.L., 1975. Descriptive statistics for nonparametric models. II. Location. Annals of Statistics 3, 1045–1069. Brodin, E., 2007. Extreme Value Statistics and Quantile Estimation with Applications in Finance and Insurance. Ph.D. Thesis, Chalmers University of Technology and University of Goteborg. Chang, K. H., 2012. Stochastic Nelder–Mead simplex method–A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684–694. Chang, K. H., 2014. A Direct Search Method for Quantile-based Simulation Optimization. (Working paper) Chang, K. H., 2014. Extending Stochastic Nelder-Mead Simplex Method for Quantile-based Simulation Optimization with Inequality Constraints. (Working paper) Dai, L. 1996. Convergence properties of ordinal comparison in the simulation of discrete event dynamic systems. Journal of Optimization Theory and Applications 91(2), 363–388. Dielman, T., C. Lowrt, R. Pfaffenberger. 1994. A comparison of quantile estimators. Communications in Statistics-Simulation and Computation 23(2), 355–371. Floudas, C. A., & Pardalos, P. M., 1990. A collection of test problems for constrained global optimization algorithms 455. Springer. Fu, M.C., 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14(3), 192–227. Fu, M.C., 2006. Gradient estimation. In: Henderson, S.G., Nelson, B.L. (Eds.), Handbooks in Operations Research and Management Science, Simulation, 13. Elsevier, Amsterdam, 75–616 (Chapter 19). Hampel, F.R., 1968. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California, Berkeley. Harrell, F.E., Davis, C.E., 1982. A new distribution-free quantile estimator. Biometrika 69(3), 635–640. Hooke, R., Jeeves, T.A., 1961. Direct search solution of numerical and statistical problems. Journal of the ACM 8(2), 212–229. Hong, L. J., 2009. Estimating quantile sensitivities. Operations research, 57(1), 118–130. Huber, P.J., 1964. Robust estimation of location parameters. Annals of Mathematical Statistics 35(1), 73–101. Humphrey, D.G., Wilson, J.R., 2000. A revised simplex search procedure for stochastic simulation response surface optimization. INFORMS Journal on Computing 12(4), 272–283. Kaigh, W.D., P.A. Lachenbruch. 1982. A generalized quantile estimator. Communications in Statistics-Theory and Methods 11(19), 2217–2238. Kleijnen, J. P., Pierreval, H., & Zhang, J., 2011. Methodology for determining the acceptability of system designs in uncertain environments. European Journal of Operational Research, 209(2), 176–183. Kiefer, J., Wolfowitz, J., 1952. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics 23(3), 462–466. Kolda, T.G., Lewis, R.M., Torczon, V., 2003. Optimization by direct search methods: new perspectives on some classical and modern methods. SIAM Review 45(3), 385–482. More, J.J., Garbow, B.S., Hillstrom, K.E., 1981. Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7(1), 17–41. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2009. Response Surface Methodology-Process and Product Optimization Using Designed Experiments. John Wiley and Sons, New York. Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. The Computer Journal 7(4), 308–313. Schwefel, H. P. P., 1993. Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc.. Serfling, R.J., 1980. Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York. Shang, Y.-W., Qiu, Y.-H., 2006. A note on the extended Rosenbrock function. Evolutionary Computation 14(1), 119–126. Shapiro, A., D. Dentcheva, A. Ruszczy´nski. 2009. Lectures on Stochastic Programming: Modeling and Theory. SIAM-Society for Industrial and Applied Mathematics. Spall, J.C., 2003. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley and Sons, New York. Spendley, W., Hext, G.R., Himsworth, F.R., 1962. Sequential application of simplexdesigns in optimization and evolutionary operation. Technometrics 4(4), 441–461. Swann, W.H., 1972. Direct search methods. In: Murray, W. (Ed.), Numerical Methods for Unconstrained Optimization. Academic Press, London. Tukey, J.W., 1960. A survey of sampling from contaminated distributions. In: Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B. (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, CA, 448–485. Tekin, E., Sabuncuoglu, I., 2004. Simulation optimization: a comprehensive review on theory and applications. IIE Transactions 36(11), 1067–1081. Wang, I.J., Spall, J.C., 2003. Stochastic optimization with inequality constraints using simultaneous perturbations and penalty functions. In: Proceedings of IEEE Conference on Decision and Control, Maui, HI, 3808–3813
|