|
1. W. J. Jack, "Microelectromechanical systems (MEMS): fabrication, design and applications". Smart Materials and Structures, 2001. 10(6): p. 1115. 2. C.-M. Ho and Y.-C. Tai, "Micro-electro-mechanical-systems (MEMS) and fluid flows". Annual Review of Fluid Mechanics, 1998. 30(1): p. 579-612. 3. J. W. Park, H. J. Kim, M. W. Kang, and N. L. Jeon, "Advances in microfluidics-based experimental methods for neuroscience research". Lab Chip, 2013. 13(4): p. 509-21. 4. E. Nuxoll, "BioMEMS in drug delivery". Adv Drug Deliv Rev, 2013. 65(11-12): p. 1611-25. 5. J.-Y. Yoon and B. Kim, "Lab-on-a-chip pathogen sensors for food safety". Sensors (Basel), 2012. 12(8): p. 10713-41. 6. A. K. Au, H. Lai, B. R. Utela, and A. Folch, "Microvalves and Micropumps for BioMEMS". Micromachines, 2011. 2(4): p. 179-220. 7. A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. langer, "A BioMEMS review: MEMS technology for physiologically integrated devices". Proceedings of the Ieee, 2004. 92(1): p. 6-21. 8. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, "Gene transfer into mouse lyoma cells by electroporation in high electric fields". The EMBO journal, 1982. 1(7): p. 841. 9. I. P. Sugar and E. Neumann, "Stochastic model for electric field-induced membrane pores electroporation". Biophysical Chemistry, 1984. 19(3): p. 211-225. 10. S. Movahed and D. Li, "Microfluidics cell electroporation". Microfluidics and Nanofluidics, 2011. 10(4): p. 703-734. 11. J. Kim, I. Hwang, D. Britain, T. D. Chung, Y. Sun, and D.-H. Kim, "Microfluidic approaches for gene delivery and gene therapy". Lab Chip, 2011. 11(23): p. 3941-3948. 12. J. K. Valley, S. Neale, H.-Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, "Parallel single-cell light-induced electroporation and dielectrophoretic manipulation". Lab Chip, 2009. 9(12): p. 1714-1720. 13. H.-T. Kuo, Y.-H. Lee, C.-H. Wang, C.-M. Chang, and G.-B. Lee. An optical-induced platform for gene transfection. in Micro TAS. 2012. 14. C.-H. Wang, Y.-H. Lee, H.-T. Kuo, W.-F. Liang, W.-J. Li, and G.-B. Lee, "Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection". Lab Chip, 2014. 14(3): p. 592-601. 15. G.-B. Lee, H.-C. Wu, P.-F. Yang, and J. D. Mai, "Optically-induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability". Lab Chip, 2014. 16. J. H. Kang and J.-K. Park, "Cell separation technology". Yeast, 2004. 90. 17. N. Pamme, "Continuous flow separations in microfluidic devices". Lab Chip, 2007. 7(12): p. 1644-1659. 18. A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, "Microfluidics for cell separation". Medical & Biological Engineering & Computing, 2010. 48(10): p. 999-1014. 19. A. Lenshof and T. Laurell, "Continuous separation of cells and particles in microfluidic systems". Chemical Society Reviews, 2010. 39(3): p. 1203-1217. 20. X. Xuan, J. Zhu, and C. Church, "Particle focusing in microfluidic devices". Microfluidics and Nanofluidics, 2010. 9(1): p. 1-16. 21. H. W. Hou, A. A. S. Bhagat, W. C. Lee, S. Huang, J. Han, and C. T. Lim, "Microfluidic Devices for Blood Fractionation". Micromachines, 2011. 2(3): p. 319-343. 22. J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, "Sorting cells by size, shape and deformability". Lab Chip, 2012. 12(6): p. 1048-51. 23. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching". Nat Biotechnol, 2005. 23(1): p. 83-7. 24. N. Xia, T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. Ingber, "Combined microfluidic-micromagnetic separation of living cells in continuous flow". Biomed Microdevices, 2006. 8(4): p. 299-308. 25. X. Hu, P. H. Bessette, J. Qian, C. D. Meinhart, P. S. Daugherty, and H. T. Soh, "Marker-specific sorting of rare cells using dielectrophoresis". Proc Natl Acad Sci U S A, 2005. 102(44): p. 15757-61. 26. T. Akagi and T. Ichiki, "Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility?". Anal Bioanal Chem, 2008. 391(7): p. 2433-41. 27. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice". Nature, 2003. 426(6965): p. 421-424. 28. F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. Laurell, "Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation". Analytical Chemistry, 2007. 79(14): p. 5117-5123. 29. J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, and R. H. Austin, "Deterministic hydrodynamics: Taking blood apart". Proceedings of the National Academy of Sciences, 2006. 103(40): p. 14779-14784. 30. P. Sethu, A. Sin, and M. Toner, "Microfluidic diffusive filter for apheresis (leukapheresis)". Lab Chip, 2006. 6(1): p. 83-9. 31. J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continuous particle separation in a microchannel having asymmetrically arranged multiple branches". Lab Chip, 2005. 5(7): p. 778-784. 32. M. Yamada and M. Seki, "Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics". Lab Chip, 2005. 5(11): p. 1233-9. 33. M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, and T. Okano, "Microfluidic devices for size-dependent separation of liver cells". Biomed Microdevices, 2007. 9(5): p. 637-45. 34. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, "Inertial microfluidics for continuous particle separation in spiral microchannels". Lab Chip, 2009. 9(20): p. 2973-80. 35. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, "Isolation of rare circulating tumour cells in cancer patients by microchip technology". Nature, 2007. 450(7173): p. 1235-9. 36. S. Yang, A. Undar, and J. D. Zahn, "A microfluidic device for continuous, real time blood plasma separation". Lab Chip, 2006. 6(7): p. 871-80. 37. S. Choi, S. Song, C. Choi, and J.-K. Park, "Continuous blood cell separation by hydrophoretic filtration". Lab Chip, 2007. 7(11): p. 1532-8. 38. F. Petersson, A. Nilsson, H. Jönsson, and T. Laurell, "Carrier Medium Exchange through Ultrasonic Particle Switching in Microfluidic Channels". Analytical Chemistry, 2005. 77(5): p. 1216-1221. 39. M. Yamada, J. Kobayashi, M. Yamato, M. Seki, and T. Okano, "Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange". Lab Chip, 2008. 8(5): p. 772-778. 40. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous Particle Separation Through Deterministic Lateral Displacement". Science, 2004. 304(5673): p. 987-990. 41. D. W. Inglis, J. A. Davis, R. H. Austin, and J. C. Sturm, "Critical particle size for fractionation by deterministic lateral displacement". Lab Chip, 2006. 6(5): p. 655-658. 42. R. Quek, D. V. Le, and K.-H. Chiam, "Separation of deformable particles in deterministic lateral displacement devices". Physical Review E, 2011. 83(5): p. 056301. 43. N. M. Karabacak, P. S. Spuhler, F. Fachin, E. J. Lim, V. Pai, E. Ozkumur, J. M. Martel, N. Kojic, K. Smith, P.-i. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T. A. Barber, S. L. Stott, S. Maheswaran, R. Kapur, D. A. Haber, and M. Toner, "Microfluidic, marker-free isolation of circulating tumor cells from blood samples". Nat Protoc, 2014. 9(3): p. 694-710. 44. Z. Liu, F. Huang, J. Du, W. Shu, H. Feng, X. Xu, and Y. Chen, "Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure". Biomicrofluidics, 2013. 7(1): p. 011801. 45. S. H. Holm, J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt, "Separation of parasites from human blood using deterministic lateral displacement". Lab Chip, 2011. 11(7): p. 1326-1332. 46. K. J. Morton, K. Loutherback, D. W. Inglis, O. K. Tsui, J. C. Sturm, S. Y. Chou, and R. H. Austin, "Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials". Proceedings of the National Academy of Sciences, 2008. 105(21): p. 7434-7438. 47. J. V. Green, M. Radisic, and S. K. Murthy, "Deterministic Lateral Displacement as a Means to Enrich Large Cells for Tissue Engineering". Analytical Chemistry, 2009. 81(21): p. 9178-9182. 48. W. I. David, L. Megan, and E. N. Robert, "Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes". Journal of Micromechanics and Microengineering, 2011. 21(5): p. 054024. 49. R. D. Sochol, S. Li, L. P. Lee, and L. Lin, "Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing". Lab Chip, 2012. 12(20): p. 4168-4177. 50. R. D. Sochol, D. Corbett, S. Hesse, W. E. R. Krieger, K. T. Wolf, M. Kim, K. Iwai, S. Li, L. P. Lee, and L. Lin, "Dual-mode hydrodynamic railing and arraying of microparticles for multi-stage signal detection in continuous flow biochemical microprocessors". Lab Chip, 2014. 14(8): p. 1405-9. 51. W. Choi, S.-H. Kim, J. Jang, and J.-K. Park, "Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD)". Microfluidics and Nanofluidics, 2007. 3(2): p. 217-225. 52. H.-y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, "Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media". Lab Chip, 2010. 10(2): p. 165-172. 53. Y.-H. Lin and G.-B. Lee, "An optically induced cell lysis device using dielectrophoresis". Applied Physics Letters, 2009. 94(3). 54. P. Marszalek, D.-S. Liu, and T. Y. Tsong, "Schwan equation and transmembrane potential induced by alternating electric-field". Biophys J, 1990. 58(4): p. 1053-1058. 55. C. Kremer, C. Witte, S. L. Neale, J. Reboud, M. P. Barrett, and J. M. Cooper, "Shape-dependent optoelectronic cell lysis". Angew Chem Int Ed Engl, 2014. 53(3): p. 842-6. 56. R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, and A. I. Sokirko, "Reversible electrical breakdown of lipid bilayers: formation and evolution of pores". Biochimica et Biophysica Acta (BBA) - Biomembranes, 1988. 940(2): p. 275-287. 57. C. G. Malmberg and A. A. Maryott, "Dielectric constants of aqueous solutions of dextrose and sucrose". Journal of Research of the National Bureau of Standards, 1950. 45(4): p. 299-303. 58. M. Pavlin and D. Miklavcic, "The Effective Conductivity and the Induced Transmembrane Potential in Dense Cell System Exposed to DC and AC Electric Fields". Plasma Science, IEEE Transactions on, 2009. 37(1): p. 99-106. 59. C. Chen, J. A. Evans, M. P. Robinson, S. W. Smye, and P. O. Toole, "Measurement of the efficiency of cell membrane electroporation using pulsed ac fields". Phys Med Biol, 2008. 53(17): p. 4747. 60. K. Loutherback, K. Chou, J. Newman, J. Puchalla, R. Austin, and J. Sturm, "Improved performance of deterministic lateral displacement arrays with triangular posts". Microfluidics and Nanofluidics, 2010. 9(6): p. 1143-1149.
|