帳號:guest(18.226.93.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林祐丞
論文名稱(中文):磁流變液應用在輔具適應性關節之研究開發
論文名稱(外文):Research and Development of a Compliant Exoskeleton Joint by Using Magneto-Rheological Fluid
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):裴育晟
蘇瑞堯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033611
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:外骨骼機器人裝置適應性關節磁流變液
外文關鍵詞:Exoskeleton robotic devicesCompliant jointMagneto-rheological fluid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:480
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
隨著科技的日新月異,傳統的機械領域有部分的研究人員往智慧型機器人發展,其應用層面涵蓋了軍事、娛樂、醫療和復健看護領域等等。其中在復健看護這一區塊主要服務的對象為,因疾病或意外造成喪失肌肉功能之患者,其目的是期望透過機械的力量來幫助病患進行復健之工作。本研究目的為設計復健型輔具之適應性關節,其應用為保障病患於使用輔具時之安全性,透過磁流體的應用該關節之傳遞扭矩具有可變性,且具有最大扭矩限制的功能為此關節之設計特點。
本論文首先探討磁流體之流體性質,並將其流體性質可由外加磁場所控制之特點,應用在輔具之適應性關節設計上。本研究宗旨為輔具關節,由於其需穿戴於人體身上,在基於安全性的考量,因此本研究利用永久磁鐵取代電磁鐵來營造磁流體所需的磁場強度,透過改變永久磁鐵與磁流體之相對距離來達到磁場強度的控制,利用電磁模擬分析軟體Ansoft/Maxwell 3D進行磁場的計算模擬,可計算出磁鐵與磁流體在不同的相對距離下,磁流體的感應磁場強度,並透過理論計算出其所能傳遞之扭矩值,最後透過實驗的方式進行驗證。
As the technology advances, many studies on the fields of traditional mechanical engineering has turned to intelligent exoskeleton robotics, which include applications in military, entertainment, and rehabilitation medical uses. From the standpoint of physical rehabilitation, the aim of using exoskeleton robotics is to utilize mechanical power to assist patients in recovering from lose of arm movement due to diseases or accidents through a physical rehabilitation process. The purpose of this study is to design and develop a compliant joint to ensure safety of the users during the rehabilitation process. This compliant joint utilizes magneto-rheological fluid to vary transmitted torque of the joint. Also, it has safety to limit maximum torque that is transmitted.
This thesis first investigates properties of the magneto-rheological fluid. The properties of the magneto-rheological fluid can be controlled by the applied magnetic field and this characteristic is applied on the design of the compliant joint. Due to the fact that this rehabilitation device needs to be worn on the patients, permanent magnet is used instead of electromagnet to provide required magnetic field for the magneto-rheological fluid. The magnetic field exerted on the magneto-rheological fluid can be controlled by changing the distance between the permanent magnet and the magneto-rheological fluid. Using simulation software such as Ansoft/Maxwall 3D to calculate the magnetic field under different boundary conditions. Lastly, experiments are performed to compare the results with the theoretical results.
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 研究主題 8
第二章 磁流體性質介紹與應用....10
2.1 可控性流體 10
2.2 磁流變液之組成與特性 11
2.3 賓漢模型(Bingham model) 磁流體的組成結構 12
2.4 磁流變液的黏滯性 14
2.5 磁流體於應用上之操作型態 14
第三章 磁路設計 16
3.1 電磁學基礎理論 16
3.1.1 安培定理 16
3.1.2 B-H關係 17
3.1.3 磁通量和磁高斯定理 19
3.1.4 磁路分析 20
3.2 含磁流體之磁路分析 22
第四章 適應性關節結構設計與磁場模擬 24
4.1 適應性關節結構設計 24
4.1.1 適應性關節輸出扭矩之計算 24
4.1.2 適應性關節設計概念 26
4.1.3 外加磁場設置與控制方法 27
4.2 磁場模擬與量測 30
4.2.1 Ansoft Maxwell 3D建模 30
4.2.2 磁場量測 32
4.2.3 量測結果比較 34
第五章 適應性關節性能測試 52
5.1 適應性關節扭矩測試平台 52
5.2 扭矩測試結果 53
5.3透過模擬推算適應性關節所能輸出之扭矩 58
5.4 輸出軸之動態響應 66
第六章 結論 72
6.1 結論 72
6.2 外來展望 73
[1] B.H. Dobkin, "Strategies for stroke rehabilitation," Lancet Neurol, vol. 3, no. 9, pp. 528-36, September 2004.
[2] H.I. Krebs, N. Hogan, M.L. Aisen and B.T. Volpe, "Robot-aided neurorehabilitation," Rehabilitation Engineering, IEEE Transactions, vol. 6, no. 1, pp. 75 - 87, March 1998.
[3] S.K. Charles, H.I. Krebs, B.T. Volpe, D. Lynch and N. Hogan, "Wrist rehabilitation following stroke: initial clinical results," in 2005 ICORR 9th International Conference on Rehabilitation Robotics, New York ,NY, pp. 13–16, 2005.
[4] P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar and M. Van der Loos, "Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke," Archives of Physical Medicine and Rehabilitation, vol. 83, no. 7, pp. 952–59, July 2002.
[5] T. Nef, M. Mihelj and R. Riener, "ARMin: a robot for patient-cooperative arm therapy," Med Biol Eng Comput, vol. 45, no. 9, pp. 887-900, September 2007.
[6] J.C. Perry and J. Rosen, "Upper-Limb Powered Exoskeleton Design," IEEE/ASME Tramsactions on Mechatronics, vol. 12, no. 4, pp. 408-417, August 2007.
[7] G.A. Pratt and M.M. Williamson, "Series elastic actuators," in Proc.IEEE Int. Workshop on Intelligent Robots and Systems (IROS’95), Pittsburg, pp. 399–406, 1995.
[8] S. A. Migliore, E. A. Brown, and S. P. DeWeerth, "Biologically," in Proc. IEEE Int. Conf. Robotics , pp. 4519–4524, 2005.
[9] K. Koganezawa, T. Inaba, and T. Nakazawa, "Stiffness and angle control of antagonistially driven joint," in in Proc. 1st IEEE/RAS-EMBS Int. Conf. Biomedical Robotics and Biomechatronics (BioRob’06), pp. 1007–1013, 2006.
[10] C.E. English and D. Russell, "Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs," Mechanism and Machine Theory, vol. 34, no. 1, pp. 7–25, January 1999.
[11] T. Morita and S. Sugano, "Development of a new robot joint using a mechanical impedance adjuster," in Proc. IEEE Int. Conf. Robotics and Automation (ICRA’95), pp. 2469–2475, 1995.

[12] T. Morita and S. Sugano, "Development of an anthropomorphic force-controlled manipulator wam-10," in in Proc. 8th Int. Conf. Advanced Robotics (ICAR’97), pp. 701–706, 1997.
[13] K. Hollander and T. Sugar, "Concepts for compliant actuation in wearable robotic systems," in Proc. US-Korea Conf. Science, Technology and Entrepreneurship (UKC’04), pp. 644–650, 2004.
[14] J. Hesselbach and C. Abel-Keilhack, "Active hydrostatic bearing with magnetorheological fluid," JOURNAL OF APPLIED PHYSICS, vol. 93, no. 10, May 2003.
[15] T. Kikuchi, K. Ikeda, K. Otsuki, T. Kakehashi and J. Furusho, "Compact MR fluid clutch device for human-friendly actuator," Journal of Physics: Conference Series , vol. 149, 2009.
[16] A.S. Shafer and M.R. Kermani, "On the Feasibility and Suitability of MR Fluid Clutches in human-Friendly Manipulators," IEEE/ASME Tramsactions on Mechatronics, vol. 16, no. 6, December 2011.
[17] N. Rosenfeld, N.M. Wereley, R. Radhakrishnan and T.S. Sudarshan, "Behaviour of Magneto-rheological fluids utilizing nano powder iron," International Journal of Modern Physics B, vol. 16, pp. 2392– 2398, July 2002.
[18] " Lord Corporation, Dr. Dave’s Do-It-Yourself MR Fluid, Designing with MR Fluid, Magnetic Circuit Design, FAQs, Fluid specifications," 2006.
[19] R. W. Phillips, "Engineering Applications of Fluids with a Variable Yield Stress," Ph.D. Thesis, University of California, Berkeley, 1969.
[20] A.G. Olabi and A. Grunwald, "Design and application of magneto-rheological fluid," Materials and Design, vol. 28, pp. 2658-2664, 2007.
[21] More Thomas AVRAAM, "MR-fluid brake design and its application to a portable muscular rehabilitation device," Ph.D. Thesis, Universit´e Libre de Bruxelles, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *