帳號:guest(3.137.174.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林志霖
作者(外文):Lin, Chih-Lin
論文名稱(中文):整合型光纖式微流體系統應用於蝴蝶蘭病原體之偵測
論文名稱(外文):A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):王玉麟
陳宗嶽
口試委員(外文):Yu-Lin Wang
Tzong-Yueh Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033609
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:79
中文關鍵詞:微流體光纖蝴蝶蘭病原體偵測反轉錄恆溫環狀擴增法
外文關鍵詞:microfluidicoptical fibersPhalaenopsis orchidpathogen detectionreverse transcription loop-mediated isothermal amplification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:484
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
蝴蝶蘭是臺灣最具有重要性的經濟作物之一。為了避免或抑制大量蘭花病毒疾病的大流行,因此快速、準確且能即地偵測蘭花病原體十分重要。傳統上,病原體偵測的方式相當耗時,且需要在有精密的儀器的實驗室裡,經由訓練過的專業人員進行操作,因此難以在田野間進行檢測。本研究開發一個整合光纖的微流體系統以用來偵測蝴蝶蘭病毒。首先,可藉由修飾有特異性核酸探針之微型磁珠進行病毒核糖核酸之純化,;接著,使用反轉錄恆溫環狀擴增法放大病毒的核糖核酸。成功增幅的反轉錄恆溫環狀擴增反應會導致沉澱物焦磷酸鎂生成,而反應物的濁度改變,可以直接用肉眼觀察。此外,光纖式偵測模組以及微型混合元件成功地被整合於微流體晶片以直接在晶片上偵測反轉錄恆溫環狀擴增反應之產物。使用微型混合元件,反轉錄恆溫環狀擴增反應之產物可於混合步驟後均勻地分布。因此,測量隨著濁度改變而變化之光學訊號可代表增幅的情形。此方法也提高光學的靈敏度以及偵測極限。此整合型微流體系統應用在番椒黄化病毒的偵測極限為25 飛克 (約為5000拷貝數),而東亞蘭嵌紋病毒的偵測極限則為25 皮克 (約為5000000拷貝數),上述兩種病毒的偵測靈敏度皆與其他目前已知或傳統的大型精密方法接近。因此,光纖式整合型微流體系統已經被成功開發,並可在65分鐘內,自動化地完成具有高靈敏度且同時兼具快速、準確的方式偵測蝴蝶蘭裡病毒性的病原體,除了避免傳統上大型且複雜的儀器使用,更可減少不必要的能源、試劑損耗、減少系統體積,在方便攜帶的情況下,更有利田野間進行檢測。
Orchids of the genus Phalaenopsis are some of the most economically important plants in Taiwan. Rapid, accurate, and on-site detection of pathogens from these orchids is therefore of critical importance for preventing or suppressing costly disease outbreaks. Traditional pathogen detection methods are relatively time-consuming, require well-equipped laboratories with well-trained personnel, and cannot be conducted in field. In this study, a microfluidic system integrated with buried optical fibers was developed to detect viral pathogens of Phalaenopsis spp. Briefly, virus-specific ribonucleic acid (RNA) purification was achieved by using a pre-treatment incubation with magnetic beads surface-coated with specific nucleotide probes, and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was used subsequently to amplify the viral RNA. Positive RT-LAMP reactions resulted in the precipitation of magnesium pyrophosphate, which caused a change in turbidity that could be seen by the naked eye. Alternatively, a buried optical fiber-based detection module and a micro-stirring device were then integrated into the microfluidic chip to detect the RT-LAMP reaction product directly on the chip in situ. With the micro-stirring device, the RT-LAMP product became uniformly distributed after the stirring step. Therefore, the situation of amplification can be detected by measuring the change of the optical signals caused by the turbidity change. The optical sensitivity and limit of detection of the optical detection system were also improved by this approach. The limit of detection for this system was found to be 25 femtograms (about 5000 target copies) for capsicum chlorosis virus and 25 picograms (about 5000000 target copies) for cymbidium mosaic virus, which is of similar sensitivity of existing, delicate laborious methods. Therefore, by using the integrated microfluidic system with buried optical fibers, a sensitive, rapid, accurate, and automatic diagnosis of viral pathogens in Phalaenopsis spp. orchids could be achieved within only 65 minutes. Furthermore, the integrated system is compact in size and is relatively easy to operate. The power and reagent consumption are greatly reduced. Therefore, it would be promising for in-field study.
Abstract i
摘要 iii
誌謝 v
Table of Contents vii
List of Figures x
Abbreviations xvii

Chapter 1 Introduction 1
1.1 Virus in Phalaenopsis orchid and its diagnostic methods 1
1.2 MEMS and bio-MEMS 5
1.3 Motivation and objectives 7

Chapter 2 Design and Fabrication 10
2.1 Integrated microfluidic chip design 10
2.2 The fabrication processes of the microfluidic chip 12
2.3 The working principle of the integrated microfluidic chip 14
2.4 The working principle of stirring device and optical detection 15

Chapter 3 Materials and Methods 21
3.1 Experimental procedures 21
3.2 Preparation of primer, nucleotide probe and nucleotide-probe-coated magnetic beads 24
3.3 Gel electrophoresis 26
3.4 Custom-made microfluidic control system 27
3.5 Optical fiber and its working principles 28
3.6 Fluorescent dye and its optimization tests 30
3.6.1 Optimization test of concentration 30
3.6.2 Optimization test of temperature 32

Chapter 4 Results and Discussion 37
4.1 Surface modification and the pumping performance of the integrated microfluidic chip 37
4.2 Performance of the optical detection of the buried optical fibers 39
4.3 The results of the real-time turbidity detection and the effect of the stirring membrane 42
4.4 The limit of detection of the optical detection system 44
4.4.1 The limit of capsicum chlorosis virus (CaCV) detection 44
4.4.2 The limit of cymbidium mosaic virus (CymMV) detection 45
4.5 Virus detection for field samples by using the turbidity and fluorescent detection 48
4.5.1 The detection of field samples infected with capsicum chlorosis virus (CaCV) 48
4.5.2 The detection of field samples infected with cymbidium mosaic virus (CymMV) 49

Chapter 5 Conclusions 64

References 66

Publication list 78
1. Y. X. Zheng, C. C. Chen and F. J. Jan, "Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses", Arch. Virol., 2011, 156, 421-432.
2. Y. X. Zheng, C. C. Chen, C. J. Yang, S. D. Yeh and F. J. Jan, "Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids", Eur. J. Plant Pathol., 2008, 120, 199-209.
3. M. S. Lee, M. J. Yang, Y. C. Hseu, G. H. Lai, W. T. Chang, Y. H. Hsu and M. K. Lin, "One-step reverse transcription loop-mediated isothermal amplification assay for rapid detection of Cymbidium mosaic virus", J. Virol. Methods, 2011, 173, 43-48.
4. F. X. Liu, Y. C. Han, W. D. Li, X. Q. Shi, W. Xu and M. G. Lin, "Incidence of cymbidium mosaic virus and odontoglossum ringspot virus affecting oncidium orchids in Hainan Island, China", Crop Prot., 2013, 54, 176-180.
5. F. W. Zettler, N. J. Ko, G. C. Wisler, M. S. Elliott and S. M. Wong, "Viruses of orchids and their control", Plant Dis., 1990, 74, 621-626.
6. A. J. Eun and S. M. Wong, "Detection of cymbidium mosaic potexvirus and odontoglossum ringspot tobamovirus using immuno-capillary zone electrophoresis", Phytopathology, 1999, 89, 522-528.
7. M. L. Seoh, S. M. Wong and L. Zhang, "Simultaneous TD/RT-PCR detection of cymbidium mosaic potexvirus and odontoglossum ringspot tobamovirus with a single pair of primers", J. Virol. Methods, 1998, 72, 197-204.
8. M. Arimoto, K. Mushiake, Y. Mizuta, T. Nakai, K. Muroga and I. Furusawa, "Detection of striped jack nervous necrosis virus (SJNNV) by enzyme-linked-immunosorbent-assay (ELISA)", Fish Pathol., 1992, 27, 191-195.
9. K. Y. Lien, S. H. Lee, T. J. Tsai, T. Y. Chen and G. B. Lee, "A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases", Microfluid. Nanofluid., 2009, 7, 795-806.
10. R. A. Cating, M. A. Hoy and A. J. Palmateer, "A Comparison of Standard and High-Fidelity PCR: Evaluating Quantification and Detection of Pathogen DNA in the Presence of Orchid Host Tissue", Plant Dis., 2012, 96, 480-485.
11. J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote and J. M. Ramsey, "Integrated system for rapid PCR-based DNA analysis in microfluidic devices", Anal. Chem., 2000, 72, 2995-3000.
12. C. M. Chang, W. H. Chang, C. H. Wang, J. H. Wang, J. D. Mai and G. B. Lee, "Nucleic acid amplification using microfluidic systems", Lab Chip, 2013, 13, 1225-1242.
13. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)", Electrophoresis, 2000, 21, 27-40.
14. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino and T. Hase, "Loop-mediated isothermal amplification of DNA", Nucleic Acids Res., 2000, 28, 7.
15. Y. Hataoka, L. H. Zhang, Y. Mori, N. Tomita, T. Notomi and Y. Baba, "Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips", Anal. Chem., 2004, 76, 3689-3693.
16. Y. Mori and T. Notomi, "Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases", J. Infect. Chemother., 2009, 15, 62-69.
17. X. E. Fang, Y. Y. Liu, J. L. Kong and X. Y. Jiang, "Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Quantitative Detection of Pathogens", Anal. Chem., 2010, 82, 3002-3006.
18. F. Ahmad, G. Seyrig, D. M. Tourlousse, R. D. Stedtfeld, J. M. Tiedje and S. A. Hashsham, "A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips", Biomed Microdevices, 2011, 13, 929-937.
19. P. J. Asiello and A. J. Baeumner, "Miniaturized isothermal nucleic acid amplification, a review", Lab Chip, 2011, 11, 1420-1430.
20. S. Fukuta, T. Iida, Y. Mizukami, A. Ishida, J. Ueda, M. Kanbe and Y. Ishimoto, "Detection of Japanese yam mosaic virus by RT-LAMP", Arch. Virol., 2003, 148, 1713-1720.
21. W. Kiatpathomchai, W. Jareonram, S. Jitrapakdee and T. W. Flegel, "Rapid and sensitive detection of Taura syndrome virus by reverse transcription loop-mediated isothermal amplification", J. Virol. Methods, 2007, 146, 125-128.
22. K. Shirato, H. Nishimura, M. Saijo, M. Okamoto, M. Noda, M. Tashiro and F. Taguchi, "Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification", J. Virol. Methods, 2007, 139, 78-84.
23. C. H. Wang, K. Y. Lien, J. J. Wu and G. B. Lee, "A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification", Lab Chip, 2011, 11, 1521-1531.
24. C. H. Huang, G. H. Lai, M. S. Lee, W. H. Lin, Y. Y. Lien, S. C. Hsueh, J. Y. Kao, W. T. Chang, T. C. Lu, W. N. Lin, H. J. Chen and M. S. Lee, "Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of chicken anaemia virus", J. Appl. Microbiol., 2010, 108, 917-924.
25. G Terrance Walker, Melinda S Fraiser, James L Schram, Michael C Little, James G Nadeau and Douglas P Malinowski, "Strand displacement amplification—an isothermal, in vitro DNA amplification technique", Nucleic Acids Res., 1992, 20, 1691-1696.
26. G Terrance Walker, Michael C Little, James G Nadeau and Daryl D Shank, "Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system", P. NATL. ACAD. SCI. USA., 1992, 89, 392-396.
27. W. H. Chang, S. Y. Yang, C. L. Lin, C. H. Wang, P. C. Li, T. Y. Chen, F. J. Jan and G. B. Lee, "Detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using a microfluidic system", Nanomed-Nanotechnol, 2013, 9, 1274-1282.
28. W. H. Chang, S. Y. Yang, C. H. Wang, M. A. Tsai, P. C. Wang, T. Y. Chen, S. C. Chen and G. B. Lee, "Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification", Sens. Actuator B-Chem., 2013, 180, 96-106.
29. X. E. Fang, H. Chen, L. J. Xu, X. Y. Jiang, W. J. Wu and J. L. Kong, "A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria", Lab Chip, 2012, 12, 1495-1499.
30. X. E. Fang, H. Chen, S. N. Yu, X. Y. Jiang and J. L. Kong, "Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip", Anal. Chem., 2011, 83, 690-695.
31. S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R. Meldrum, C. N. Lee and C. W. Lin, "Compact optical diagnostic device for isothermal nucleic acids amplification", Sens. Actuator B-Chem., 2008, 133, 493-501.
32. S. Y. Lee, C. N. Lee, H. Mark, D. R. Meldrum and C. W. Lin, "Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification", Sens. Actuator B-Chem., 2007, 127, 598-605.
33. C. C. Liu, E. Geva, M. Mauk, X. B. Qiu, W. R. Abrams, D. Malamud, K. Curtis, S. M. Owen and H. H. Bau, "An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases", Analyst, 2011, 136, 2069-2076.
34. C. C. Liu, M. G. Mauk and H. H. Bau, "A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves", Microfluid. Nanofluid., 2011, 11, 209-220.
35. D. M. Tourlousse, F. Ahmad, R. D. Stedtfeld, G. Seyrig, J. M. Tiedje and S. A. Hashsham, "A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification", Biomed. Microdevices, 2012, 14, 769-778.
36. C. H. Wang, K. Y. Lien, T. Y. Wang, T. Y. Chen and G. B. Lee, "An integrated microfluidic loop-mediated-isothermal-amplification system for rapid sample pre-treatment and detection of viruses", Biosens. Bioelectron., 2011, 26, 2045-2052.
37. Y. Mori, K. Nagamine, N. Tomita and T. Notomi, "Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation", Biochem. Biophys. Res. Commun., 2001, 289, 150-154.
38. C. M. Ho and Y. C. Tai, "Micro-electro-mechanical-systems (MEMS) and fluid flows", Annu. Rev. Fluid Mech., 1998, 30, 579-612.
39. C. S. Zhang, J. L. Xu, W. L. Ma and W. L. Zheng, "PCR microfluidic devices for DNA amplification", Biotechnol. Adv., 2006, 24, 243-284.
40. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks: A survey", Comput. Netw., 2002, 38, 393-422.
41. M. E. Motamedi, "Micro-opto-electro-mechanical systems", Opt. Eng., 1994, 33, 3505-3517.
42. M. E. Motamedi, M. C. Wu and K. S. J. Pister, "Micro-opto-electro-mechanical devices and on-chip optical processing", Opt. Eng., 1997, 36, 1282-1297.
43. K. Komvopoulos, "Surface engineering and microtribology for microelectromechanical systems", Wear, 1996, 200, 305-327.
44. B. D. Ratner and S. J. Bryant, "Biomaterials: Where we have been and where we are going", Annu. Rev. Biomed. Eng., 2004, 6, 41-75.
45. S. A. Wilson, R. P. J. Jourdain, Q. Zhang, R. A. Dorey, C. R. Bowen, M. Willander, Q. U. Wahab, M. Willander, M. A. H. Safaa, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E. W. H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu and K. Persson, "New materials for micro-scale sensors and actuators An engineering review", Mater. Sci. Eng. R-Rep., 2007, 56, 1-129.
46. H. A. Stone, A. D. Stroock and A. Ajdari, "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip", Annu. Rev. Fluid Mech., 2004, 36, 381-411.
47. T. Vilkner, D. Janasek and A. Manz, "Micro total analysis systems. Recent developments", Anal. Chem., 2004, 76, 3373-3385.
48. S. Haswell and V. Skelton, "Chemical and biochemical microreactors", Trac-Trends Anal. Chem., 2000, 19, 389-395.
49. S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng and G. B. Lee, "High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force", Lab Chip, 2013, 13, 1371-1383.
50. L. Y. Hung, Y. H. Chuang, H. T. Kuo, C. H. Wang, K. F. Hsu, C. Y. Chou and G. B. Lee, "An integrated microfluidic platform for rapid tumor cell isolation, counting and molecular diagnosis", Biomed. Microdevices, 2013, 15, 339-352.
51. C. H. Wang, K. Y. Lien, L. Y. Hung, H. Y. Lei and G. B. Lee, "Integrated microfluidic system for the identification and multiple subtyping of influenza viruses by using a molecular diagnostic approach", Microfluid. Nanofluid., 2012, 13, 113-123.
52. J. H. Wang, L. Cheng, C. H. Wang, W. S. Ling, S. W. Wang and G. B. Lee, "An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection", Biosens. Bioelectron., 2013, 41, 484-491.
53. C. H. Weng, I. S. Hsieh, L. Y. Hung, H. I. Lin, S. C. Shiesh, Y. L. Chen and G. B. Lee, "An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers", Microfluid. Nanofluid., 2013, 14, 753-765.
54. C. H. Weng, C. J. Huang and G. B. Lee, "Screening of aptamers on microfluidic systems for clinical applications", Sensors, 2012, 12, 9514-9529.
55. S. Y. Yang, J. L. Lin and G. B. Lee, "A vortex-type micromixer utilizing pneumatically driven membranes", J. Micromech. Microeng., 2009, 19, 9.
56. C. H. Weng, K. Y. Lien, S. Y. Yang and G. B. Lee, "A suction-type, pneumatic microfluidic device for liquid transport and mixing", Microfluid. Nanofluid., 2011, 10, 301-310.
57. D. C. Duffy, J. C. McDonald, O. J. A. Schueller and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)", Anal. Chem., 1998, 70, 4974-4984.
58. L. Y. Hung, T. B. Huang, Y. C. Tsai, C. S. Yeh, H. Y. Lei and G. B. Lee, "A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens", Biomed. Microdevices, 2013, 15, 539-551.
59. D. Thomson and R. G. Dietzgen, "Detection of DNA and RNA plant-viruses by PCR and RT-PCR using a rapid virus release protocol without tissue homogenization", J. Virol. Methods, 1995, 54, 85-95.
60. T. L. Hawkins, T. Oconnormorin, A. Roy and C. Santillan, "DNA purification and isolation using a solid-phase", Nucleic Acids Res., 1994, 22, 4543-4544.
61. E. M. Southern, "Detection of specific sequences among DNA fragments separated by gel-electrophoresis", J. Mol. Biol., 1975, 98, 503-&.
62. X. F. Huang and S. J. Li, "Near-field nanofluid concentration measurement by rayleigh particle scattering bragg grating evanescent wave", Int. J. Optomechatronics, 2014, 8, 100-113.
63. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment", J. Phys. Chem. B, 2003, 107, 668-677.
64. D. G. Zhou, J. L. Guo, L. P. Xu, S. W. Gao, Q. L. Lin, Q. B. Wu, L. G. Wu and Y. X. Que, "Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane", Sci Rep, 2014, 4, 8.
65. X. Z. Zhang, M. Li, Y. Cui, J. Zhao, Z. G. Cui, Q. F. Li and K. M. Qu, "Electrochemical behavior of calcein and the interaction between calcein and DNA", Electroanalysis, 2012, 24, 1878-1886.
66. N. Tomita, Y. Mori, H. Kanda and T. Notomi, "Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products", Nat. Protoc., 2008, 3, 877-882.
67. E. Hecht, Optics 4th edition, Addison-Wesley, New York, 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *