帳號:guest(18.223.209.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李婉寧
論文名稱(中文):粒線體之細胞色素c氧化酶熱化學與催化量子生物分析
論文名稱(外文):Quantum Bio-Thermochemistry and Catalysis Analysis of the Cytochrome c Oxidase on Mitochondria
指導教授(中文):洪哲文
口試委員(中文):洪哲文
楊瑞珍
黃美嬌
蔡明剛
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033608
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:66
中文關鍵詞:粒線體電子傳遞鏈氧氣還原反應
相關次數:
  • 推薦推薦:0
  • 點閱點閱:839
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究主要利用量子力學之密度泛函理論,第一原理模擬計算粒線體中電子傳遞鏈的第四個複合物,即細胞色素c氧化酶(Cytochrome c oxidase)的氧氣還原反應,以了解粒線體複雜產能機制中的一環。細胞色素c氧化酶中含有幾個重要的機制,例如電子傳遞、質子幫浦(proton pump)、氧氣還原反應等等,彼此之間是相互影響且密切相關的,本研究則主要著重在電子傳遞流程的部分,以觀察細胞色素c氧化酶活性中心的材料性質與電子轉移的整體能量分析。
研究目的與能源環保議題相關,如何使能源獲得最有效率的應用,為目前研究的關鍵點與方向,常見的燃料電池效率約40至60%,然而在生物體中化學能轉換成ATP的效率卻高達90%,故若能了解生物體高效率轉換能量的機制,也許能成為未來解決環境問題的契機,減低對於石化能源過度依賴的目的,進而減少二氧化碳的排放,減緩溫室效應所造成的氣候變遷。
本研究之分析結果,包含對細胞色素c氧化酶中的電子傳遞流程所含結構,進行幾何結構最佳化與頻率的計算、分析結構的最穩定態之能量值、能隙值、HOMO與LUMO之分子軌域圖(molecular orbital)、紅外線光譜圖(IR spectrum)、鍵長等資訊,以及計算速率決定步驟(rate-determining step)的反應速率與活性。
根據研究結果分析,我們獲得以下幾項結論。第一,分子結構受Jahn-teller effect影響,使得原始分子結構以三重態為最低能量態,也就是說三重態結構為最穩定之多重態。第二,能隙部分的資料顯示出分子結構的化學穩定性,本研究得到結論為四個結構中,以Fe-OO為活性最高的結構。第三,由反應速率與活性值計算,本研究之細胞色素c活化中心模擬物,其還原反應速率與活性遠高於無機觸媒(如Pt, Pd, Ag, Co etc.),故未來可參考此分子結構結合生物酵素與傳統觸媒,有可能繼續改進現有燃料電池性能。
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 IV
表目錄 VI
符號表 VII
第一章 緒論 1
1.1 前言 1
1.2 粒線體簡介 2
1.2.1 粒線體的結構 3
1.2.2 粒線體DNA 4
1.2.3 粒線體的功能 4
1.3 細胞色素與細胞色素C氧化酶 7
1.4 氧氣還原反應 12
1.5 文獻回顧 14
1.5.1 粒線體 14
1.5.2 細胞色素c氧化酶 14
1.6 研究動機與目的 18
第二章 理論與計算 19
2.1 前言 19
2.2 密度泛函理論 20
2.2.1 Hohenberg-Kohn理論 21
2.2.2 Kohn-Sham方法 24
2.2.3 Self-Consistent Field(SCF, 自洽場)計算 26
2.3 交換─相關泛函理論 29
2.3.1 B3LYP交換─相關泛函理論 30
2.4 基底函數組理論 30
2.4.1基底函數6-31G簡介 32
2.5 反應速率 32
第三章 模型建構與模擬方法 35
3.1 模擬流程 35
3.2 模擬模型建構 36
3.3 模擬設定 38
3.3.1. 原子軌域與能隙. 38
3.3.2. 吉布斯自由能(Gibbs Free Energy) 39
3.3.3. 紅外光譜與拉曼光譜 41
第四章 結果與討論 44
4.1 細胞色素C氧化酶 44
4.1.1 Fe為中心 44
4.1.2 Fe-OO為中心 48
4.1.3 Fe-OOH為中心 50
4.1.4 Fe-OOH2為中心 52
4.2 氧分子 54
4.3 反應速率計算 55
第五章結論與未來工作 62
5.1 結論 62
5.2 未來工作 63
參考文獻 64
1. Collman, J. P. and Decreau, R. A., Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chemical Communications, 2008(41): p. 5065-5076.
2. 瞿中和、丁明孝、王喜中, 細胞分子生物學. 九州圖書文物有限公司.
3. LadyofHats, M. R. V. Mitochondrion. Available from: http://commons.wikimedia.org/wiki/File:Animal_mitochondrion_diagram_en.svg.
4. Karp, G., Cell and Molecular Biology: concepts and experiments. 2nd ed. 1999: John Wiley and Sons, Inc.
5. H.tjerns. ATP. Available from: http://commons.wikimedia.org/wiki/File:ATP.JPG.
6. Lehninger, A. L., David L. Nelson, Michael M. Cox., Principles of Biochemistry. 3rd ed.: New York: Worth Publisher.
7. Cambell, M. K., Biochemistry. 3rd ed.: 偉明圖書有限公司.
8. Mižoch, L. porphin. Available from: http://en.wikipedia.org/wiki/Porphin.
9. Introduction-Molecular Mechnisms.
10. Yamashita, T. and Voth, G. A., Insights into the Mechanism of Proton Transport in Cytochrome c Oxidase. Journal of the American Chemical Society, 2012. 134(2): p. 1147-1152.
11. Yoshikawa, S., Muramoto, K., and Shinzawa-Itoh, K., Proton-Pumping Mechanism of Cytochrome c Oxidase. Annual Review of Biophysics, Vol 40, 2011. 40: p. 205-223.
12. Yoshioka, Y. and Mitani, M., B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Bioinorg Chem Appl, 2010: p. 182804.
13. Peng, Y. X. and Voth, G. A., Expanding the view of proton pumping in cytochrome c oxidase through computer simulation. Biochimica Et Biophysica Acta-Bioenergetics, 2012. 1817(4): p. 518-525.
14. R.Dervisoglu. fuel cell. Available from: http://en.wikipedia.org/wiki/File:Solid_oxide_fuel_cell_protonic.svg.
15. Benda, C., Ueber die Spermatogenese der Vertebraten und höherer Evertebraten, II. Theil: Die Histiogenese der Spermien. Arch. Anat. Physiol. Vol. 73, pp. 393-398, 1898.
16. Keilin, D., On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1925. 98(690): p. 312-339.
17. Margulis, L., Origin of eukaryotic cells; evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian earth. 1970, New Haven,: Yale University Press. xxii, 349 p.
18. Anderson, S., Bankier, A. T., Barrell, B. G., Debruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., Sequence and Organization of the Human Mitochondrial Genome. Nature, 1981. 290(5806): p. 457-465.
19. Diaz, F. and Moraes, C. T., Mitochondrial biogenesis and turnover. Cell Calcium, 2008. 44(1): p. 24-35.
20. Torroni, A., Achilli, A., Macaulay, V., Richards, M., and Bandelt, H. J., Harvesting the fruit of the human mtDNA tree. Trends in Genetics, 2006. 22(6): p. 339-345.
21. Reedy, C. J. and Gibney, B. R., Heme protein assemblies. Chemical Reviews, 2004. 104(2): p. 617-649.
22. Wikstrom, M., Energy-dependent reversal of the cytochrome oxidase reaction. Proc Natl Acad Sci U S A, 1981. 78(7): p. 4051-4.
23. Wikstrom, M., Identification of the Electron Transfers in Cytochrome-Oxidase That Are Coupled to Proton-Pumping. Nature, 1989. 338(6218): p. 776-778.
24. Babcock, G. T. and Wikstrom, M., Oxygen Activation and the Conservation of Energy in Cell Respiration. Nature, 1992. 356(6367): p. 301-309.
25. Kim, Y. C., Wikstrom, M., and Hummer, G., Kinetic models of redox-coupled proton pumping. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(7): p. 2169-2174.
26. Collman, J. P., Yang, Y., Dey, A., Decreau, R. A., Ghosh, S., Ohta, T., and Solomon, E. I., A functional nitric oxide reductase model. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(41): p. 15660-15665.
27. Collman, J. P., Ghosh, S., Dey, A., Decreau, R. A., and Yang, Y., Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase. J Am Chem Soc, 2009. 131(14): p. 5034-5.
28. Siletsky, S. A. and Konstantinov, A. A., Cytochrome c oxidase: Charge translocation coupled to single-electron partial steps of the catalytic cycle. Biochimica Et Biophysica Acta-Bioenergetics, 2012. 1817(4): p. 476-488.
29. Lewars, E., Computational chemistry : introduction to the theory and applications of molecular and quantum mechanics. 2nd ed. 2011, Dordrecht Netherlands ; London ; New York: Springer. xvi, 664 p.
30. Hohenberg, P. and Kohn, W., Inhomogeneous Electron Gas. Physical Review B, 1964. 136(3B): p. B864-&.
31. Kohn, W. and Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. 1133-&.
32. E. Frisch, M. J. F., G. W. Trucks, Gaussian 03 User's Reference. 2nd ed.: Gaussian, Inc.
33. Becke, A. D., Density-Functional Thermochemistry .3. The Role of Exact Exchange. Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
34. Lee, C. T., Yang, W. T., and Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Physical Review B, 1988. 37(2): p. 785-789.
35. Einstein, A. and Stern, O., An argument for the acceptance of molecular agitation at absolute zero. Annalen Der Physik, 1913. 40(3): p. 551-560.
36. Dahl, J. P., On the Einstein-Stern model of rotational heat capacities. Journal of Chemical Physics, 1998. 109(24): p. 10688-10691.
37. Ochterski, J. W., Thermochemistry in Gaussian. 2000.
38. Bligaard, T., Norskov, J. K., Dahl, S., Matthiesen, J., Christensen, C. H., and Sehested, J., The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. Journal of Catalysis, 2004. 224(1): p. 206-217.
39. Norskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., and Jonsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892.
40. 李匡邦、何東英、許東明, 光譜化學分析. 1st ed. 1997: 揚智文化事業股份有限公司.
41. Moxfyre. English: Molecular energy levels and Raman effect. 2009; Available from: http://zh.wikipedia.org/wiki/File:Raman_energy_levels.svg.
42. Original uploader was YanA. Square planar CFT splitting. Available from: http://zh.wikipedia.org/wiki/File:Square_planar.png.
43. R. Freitag, J. C., Understanding the Jahn−Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(β-diketonato)3 Complex. Chemical Education, 2013.
44. Kell, B. Activation energy. 2006; Available from: http://commons.wikimedia.org/wiki/File:Activation_energy.svg.
45. 許湶琳(指導教授:洪哲文), 低溫燃料電池陰極觸媒量子化學計算分析. 2014, 清華大學動力機械系碩士論文.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *