帳號:guest(3.135.220.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐永昱
作者(外文):Hsu, Yung-Yu
論文名稱(中文):結合濃度梯度與介電泳細胞排列技術重建體內腫瘤微環境晶片應用於血管新生之研究
論文名稱(外文):A chip integrating gradient generator and DEP cell patterning technology to reconstruct the micro environment around tumor for the studies of angiogenesis
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):呂衍達
劉承賢
李岡遠
口試委員(外文):Lu, Yen-Ta
Liu, Cheng-Hsien
Lee, Kang-yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033607
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:肺癌細胞血管新生細胞圖案化定義血管內皮細胞細胞外基質
外文關鍵詞:Lung cancerangiogenesispatternvascular endothelial cellextracellular matrix (ECM)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著醫療的進步,各種疾病的治癒率越來越高,然而,癌症卻仍深深影響著現代人,其中肺癌更是高居死亡率與罹患率之冠。在肺癌的治療上,以目前最佳的因應對策─外科手術而言,雖然有約60%的五年存活率,但其有局部性的限制,因此在醫學上,相關研究仍占有相當重要的地位。
根據最新的研究,複合式治療被認為是癌症治療的希望,也就是透過傳統療法與標靶治療的結合來提高肺癌腫瘤的治癒率。文獻指出,當癌症腫瘤生長超過2 mm時,將會因缺氧釋放血管新生因子,使新血管朝腫瘤生長,因此,使用細胞分子抑制腫瘤血管生成,即是所謂的標靶治療,已成為癌症治療的新方向。
在醫學研究上,由於直接進行體內測試將會帶來許多限制,如費用過高、法律問題與道德爭議等等,因此近年來,相關研究多使用微機電技術。微機電技術,在生物學上,能在體外重建體內組織所處之微環境,以重現體內組織機能,使研究更方便且有意義,在臨床上,使我們能在藥物測試時,預期最佳的治療效果,同時降低體內測試的成本。
然而,在過去的血管新生研究中,多直接使用已知之生長因子VEGF,但實際上在不同的生長階段,腫瘤釋放的生長因子並不相同,且腫瘤的構成不只有癌症細胞,亦包含許多非實質性細胞,因此,本計畫預期設計一生醫晶片,同時整合濃度梯度產生器與DEP細胞排列技術,重建體內肺癌腫瘤組織所處之微環境,並將其應用在血管新生的研究,期望能重現腫瘤細胞釋放血管新生因子,誘使新血管朝腫瘤生長的過程,以探討癌症細胞與血管內皮細胞相互作用,希望能在腫瘤研究與臨床癌症標靶治療上提供相關資訊。
With the advance of the medical approach, the cure rate of many diseases has been improved. However, cancer still deeply affects human being. Among them, lung cancer is the one with the highest mortality and morbidity. There are so many treatments. The most effective one is surgery with about 60% of the five-year survival but it is locally restricted. Therefore, the related research still occupies a very important position. According to the latest research, the treatment combining traditional strategies and targeted therapy is considered the new hope to cure cancer. Literature indicates that when tumor grows over 2 mm in diameter, it would release the angiogenic factors, which would induce the new blood vessel growth toward the tumor due to hypoxia. Therefore, using a cell based systems to inhibit the angiogenesis of tumor had become the new strategy of cancer treatment.
In medical research, in vivo test has many restrictions, such like the high cost, legal issues and ethical controversies. MEMS technology, which not only can be used to reconstruct the micro environment around tissue to reappear the function of tissue in vitro, but also predict the improved treatment effect for medication tests to reduce the cost of clinical practice. However, the past researches most use VEGF to induce angiogenesis directly. In fact, at different stage of the tumor, the angiogenesis facts released by the tumor are different. Moreover, the composition of the tumor is not only tumor cells but also many nonparenchymal cells. Thus, a chip integrating gradient generator and DEP cell patterning technology is developed in this research to reconstruct the micro environment around tumor for the studies of angiogenesis. It is expected to provide pharmaceutical information and aid in drug discovery for cancer.
目錄
Abstract I
中文摘要 II
致謝 III
目錄 IV
圖目錄 VII
1. 緒論 1
1.1. 研究背景與動機 1
1.1.1. 微機電技術與實驗室晶片 1
1.1.2. 腫瘤血管新生 2
1.1.3. 血管新生與細胞外基質(extracellular matrix ,ECM) 4
1.2. 研究動機與目標 5
1.3. 文獻回顧 6
1.3.1. 微流體系統產生濃度梯度 6
1.3.2. 微流體系統產生濃度梯度在生物研究上之應用 6
1.3.3. 微流體濃度梯度產生裝置之血管新生生物應用 11
1.3.4. 三維空間基質 13
1.3.5. 細胞排列技術 15
1.4. 肺癌與腫瘤治療及其前瞻性 20
2. 研究方法、原因與元件設計 22
2.1. 理論背景 22
2.1.1. 介電泳 22
2.1.2. 擴散理論 25
2.1.3. 微尺度下的物質傳遞 28
2.2. 微流體分析 29
2.3. 肺癌組織模型 31
2.4. 設計概念 32
2.4.1. 肺癌組織模型電極設計 34
2.4.2. 肺癌組織模型圖案化定義工作原理 35
2.4.3. 肺癌組織模型電極之數值模擬 36
2.4.4. 載入細胞外基質微流道設計 37
2.4.5. 擴散效應濃度梯度產生裝置之設計 38
3. 晶片製程 41
3.1. 製作流程 41
3.1.1. A549 與 HUVEC 區域定義微流道製程 41
3.1.2. 肺癌組織圖形化定義電極製程 43
3.2. 製程結果 45
4. 實驗結果與討論 46
4.1. 材料準備 46
4.1.1. 細胞培養 46
4.1.2. 表面改質增加細胞貼附能力 47
4.2. 實驗架設 48
4.2.1. 儀器架設 48
4.2.2. 實驗參數設定 49
4.3. 實驗結果 50
4.3.1. 肺癌組織模型圖案化定義 50
4.3.2. 雙層 su-8 結構測試結果 51
4.3.2.1. 濃度梯度測試 51
4.3.2.2. 細胞遷移測試 52
4.3.3. 不同FBS濃度對A549釋放VEGF細胞之影響 53
4.3.4. 細胞排列對A549釋放VEGF細胞之影響 54
4.3.5. 人類臍帶血管內皮細胞遷移實驗 55
4.3.5.1. 實驗結論 56
5. 結論 57
6. 參考文獻 58
[1] T. K. Hunt, D. R. Knighton, K. K. Thakral, W. H. Goodson, 3rd, and W. S. Andrews, "Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages," Surgery, vol. 96, pp. 48-54, Jul 1984.
[2] L. P. K. Reynolds, S. D. ; Redmer, D. A., "Angiogenesis in the female reproductive system.," The FASEB Journal, vol. 6, pp. 886-892, 1992.
[3] M. Greenblatt and P. Shubi, "Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique," J Natl Cancer Inst, vol. 41, pp. 111-24, Jul 1968.
[4] J. Folkman, "Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, pp. 1182-6, Nov 18 1971.
[5] D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara, "Vascular endothelial growth factor is a secreted angiogenic mitogen," Science, vol. 246, pp. 1306-9, Dec 8 1989.
[6] D. Shweiki, A. Itin, D. Soffer, and E. Keshet, "Vascular Endothelial Growth-Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis," Nature, vol. 359, pp. 843-845, Oct 29 1992.
[7] C. D. Bingle and C. J. Craven, "PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx," Hum Mol Genet, vol. 11, pp. 937-43, Apr 15 2002.
[8] D. Hanahan and J. Folkman, "Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis," Cell, vol. 86, pp. 353-364, Aug 9 1996.
[9] V. Schirrmacher, "Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies," Adv Cancer Res, vol. 43, pp. 1-73, 1985.
[10] C. L. Helm, M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz, "Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism," Proc Natl Acad Sci U S A, vol. 102, pp. 15779-84, Nov 1 2005.
[11] N. Yamamura, R. Sudo, M. Ikeda, and K. Tanishita, "Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells," Tissue Eng, vol. 13, pp. 1443-53, Jul 2007.
[12] M. H. Zaman, L. M. Trapani, A. Siemeski, D. MacKellar, H. Gong, R. D. Kamm, et al., "Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis (vol 103, pg 10889, 2006)," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 13897-13897, Sep 12 2006.
[13] J. Folkman, "Angiogenesis: an organizing principle for drug discovery?," Nat Rev Drug Discov, vol. 6, pp. 273-86, Apr 2007.
[14] C. M. Ghajar, K. S. Blevins, C. C. Hughes, S. C. George, and A. J. Putnam, "Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation," Tissue Eng, vol. 12, pp. 2875-88, Oct 2006.
[15] R. Hallmann, N. Horn, M. Selg, O. Wendler, F. Pausch, and L. M. Sorokin, "Expression and function of laminins in the embryonic and mature vasculature," Physiol Rev, vol. 85, pp. 979-1000, Jul 2005.
[16] G. Bix and R. V. Iozzo, "Novel interactions of perlecan: unraveling perlecan's role in angiogenesis," Microsc Res Tech, vol. 71, pp. 339-48, May 2008.
[17] K. Hayashi, J. A. Madri, and P. D. Yurchenco, "Endothelial-Cells Interact with the Core Protein of Basement-Membrane Perlecan through Beta-1 and Beta-3 Integrins - an Adhesion Modulated by Glycosaminoglycan," Journal of Cell Biology, vol. 119, pp. 945-959, Nov 1992.
[18] C. Sundberg, J. A. Nagy, L. F. Brown, D. Feng, I. A. Eckelhoefer, E. J. Manseau, et al., "Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery," Am J Pathol, vol. 158, pp. 1145-60, Mar 2001.
[19] R. G. Rowe and S. J. Weiss, "Breaching the basement membrane: who, when and how?," Trends Cell Biol, vol. 18, pp. 560-74, Nov 2008.
[20] S. H. Chang, K. Kanasaki, V. Gocheva, G. Blum, J. Harper, M. A. Moses, et al., "VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation," Cancer Res, vol. 69, pp. 4537-44, May 15 2009.
[21] R. F. Nicosia and J. A. Madri, "The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model," Am J Pathol, vol. 128, pp. 78-90, Jul 1987.
[22] D. S. Grant and H. K. Kleinman, "Regulation of capillary formation by laminin and other components of the extracellular matrix," EXS, vol. 79, pp. 317-33, 1997.
[23] L. E. Benjamin, D. Golijanin, A. Itin, D. Pode, and E. Keshet, "Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal," J Clin Invest, vol. 103, pp. 159-65, Jan 1999.
[24] D. Walpita and E. Hay, "Studying actin-dependent processes in tissue culture," Nat Rev Mol Cell Biol, vol. 3, pp. 137-41, Feb 2002.
[25] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, pp. 211-24, Mar 2006.
[26] K. M. Yamada and E. Cukierman, "Modeling tissue morphogenesis and cancer in 3D," Cell, vol. 130, pp. 601-10, Aug 24 2007.
[27] M. H. Zaman, L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, et al., "Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis," Proc Natl Acad Sci U S A, vol. 103, pp. 10889-94, Jul 18 2006.
[28] A. Shamloo and S. C. Heilshorn, "Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients," Lab Chip, vol. 10, pp. 3061-8, Nov 21 2010.
[29] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device," Lab Chip, vol. 5, pp. 401-6, Apr 2005.
[30] J. Y. Park, C. M. Hwang, S. H. Lee, and S. H. Lee, "Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient," Lab Chip, vol. 7, pp. 1673-80, Dec 2007.
[31] K. Gupta, D. H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab Chip, vol. 10, pp. 2019-31, Aug 21 2010.
[32] F. Lin, C. M. Nguyen, S. J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration," Biochem Biophys Res Commun, vol. 319, pp. 576-81, Jun 25 2004.
[33] G. N. Li, J. Liu, and D. Hoffman-Kim, "Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth," Ann Biomed Eng, vol. 36, pp. 889-904, Jun 2008.
[34] C. Joanne Wang, X. Li, B. Lin, S. Shim, G. L. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab Chip, vol. 8, pp. 227-37, Feb 2008.
[35] C. R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, pp. 497-507, Feb 7 2011.
[36] F. Lin, "Chapter 15. A microfluidics-based method for chemoattractant gradients," Methods Enzymol, vol. 461, pp. 333-47, 2009.
[37] A. D. van der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes, "A microfluidic wound-healing assay for quantifying endothelial cell migration," Am J Physiol Heart Circ Physiol, vol. 298, pp. H719-25, Feb 2010.
[38] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates," Hum Reprod, vol. 25, pp. 613-22, Mar 2010.
[39] S. J. Wang, W. Saadi, F. Lin, C. Minh-Canh Nguyen, and N. Li Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis," Exp Cell Res, vol. 300, pp. 180-9, Oct 15 2004.
[40] W. Saadi, S. J. Wang, F. Lin, and N. L. Jeon, "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis," Biomed Microdevices, vol. 8, pp. 109-18, Jun 2006.
[41] B. Mosadegh, W. Saadi, S. J. Wang, and N. L. Jeon, "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients," Biotechnol Bioeng, vol. 100, pp. 1205-13, Aug 15 2008.
[42] S. Nandagopal, D. Wu, and F. Lin, "Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields," PLoS One, vol. 6, p. e18183, 2011.
[43] S. Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," J Exp Med, vol. 115, pp. 453-66, Mar 1 1962.
[44] D. Zicha, G. A. Dunn, and A. F. Brown, "A new direct-viewing chemotaxis chamber," J Cell Sci, vol. 99 ( Pt 4), pp. 769-75, Aug 1991.
[45] S. H. Zigmond and J. G. Hirsch, "Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor," J Exp Med, vol. 137, pp. 387-410, Feb 1 1973.
[46] M. Kim and T. Kim, "Diffusion-Based and Long-Range Concentration Gradients of Multiple Chemicals for Bacterial Chemotaxis Assays," Analytical Chemistry, vol. 82, pp. 9401-9409, 2010/11/15 2010.
[47] J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips," Nature, vol. 442, pp. 403-11, Jul 27 2006.
[48] H. C. Sadava D, et al. (2009). Life: the science of biology, Sinauer and M. Associates Inc.
[49] K. Francis and B. O. Palsson, "Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion," Proc Natl Acad Sci U S A, vol. 94, pp. 12258-62, Nov 11 1997.
[50] T. M. Keenan and A. Folch, "Biomolecular gradients in cell culture systems," Lab Chip, vol. 8, pp. 34-57, Jan 2008.
[51] S. Toetsch, P. Olwell, A. Prina-Mello, and Y. Volkov, "The evolution of chemotaxis assays from static models to physiologically relevant platforms," Integr Biol (Camb), vol. 1, pp. 170-81, Feb 2009.
[52] B. G. Chung and J. Choo, "Microfluidic gradient platforms for controlling cellular behavior," Electrophoresis, vol. 31, pp. 3014-27, Sep 2010.
[53] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, pp. 826-30, Aug 2002.
[54] J. Ruan, L. Wang, M. Xu, D. Cui, X. Zhou, and D. Liu, "Fabrication of a microfluidic chip containing dam, weirs and gradient generator for studying cellular response to chemical modulation," Materials Science and Engineering: C, vol. 29, pp. 674-679, 4/30/ 2009.
[55] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays," Biotechnol Bioeng, vol. 89, pp. 1-8, Jan 5 2005.
[56] P. J. Lee, P. J. Hung, V. M. Rao, and L. P. Lee, "Nanoliter scale microbioreactor array for quantitative cell biology," Biotechnol Bioeng, vol. 94, pp. 5-14, May 5 2006.
[57] T. I. Moore, C. S. Chou, Q. Nie, N. L. Jeon, and T. M. Yi, "Robust spatial sensing of mating pheromone gradients by yeast cells," PLoS One, vol. 3, p. e3865, 2008.
[58] C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes, "A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics," Lab Chip, vol. 9, pp. 545-54, Feb 21 2009.
[59] J. Atencia, G. A. Cooksey, and L. E. Locascio, "A robust diffusion-based gradient generator for dynamic cell assays," Lab Chip, vol. 12, pp. 309-16, Jan 21 2012.
[60] D. Irimia, G. Charras, N. Agrawal, T. Mitchison, and M. Toner, "Polar stimulation and constrained cell migration in microfluidic channels," Lab Chip, vol. 7, pp. 1783-90, Dec 2007.
[61] G. M. Walker, H. C. Zeringue, and D. J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, pp. 91-7, Apr 2004.
[62] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, pp. 3379-85, Sep 8 2010.
[63] J. Atencia, J. Morrow, and L. E. Locascio, "The microfluidic palette: a diffusive gradient generator with spatio-temporal control," Lab Chip, vol. 9, pp. 2707-14, Sep 21 2009.
[64] M. Morel, J. C. Galas, M. Dahan, and V. Studer, "Concentration landscape generators for shear free dynamic chemical stimulation," Lab Chip, vol. 12, pp. 1340-6, Apr 7 2012.
[65] E. Cimetta, C. Cannizzaro, R. James, T. Biechele, R. T. Moon, N. Elvassore, et al., "Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling," Lab Chip, vol. 10, pp. 3277-83, Dec 7 2010.
[66] M. E. Brett, R. DeFlorio, D. E. Stone, and D. T. Eddington, "A microfluidic device that forms and redirects pheromone gradients to study chemotropism in yeast," Lab Chip, vol. 12, pp. 3127-34, Sep 7 2012.
[67] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nat Med, vol. 6, pp. 389-95, Apr 2000.
[68] R. K. Jain, "Molecular regulation of vessel maturation," Nat Med, vol. 9, pp. 685-93, Jun 2003.
[69] P. Carmeliet and M. Tessier-Lavigne, "Common mechanisms of nerve and blood vessel wiring," Nature, vol. 436, pp. 193-200, Jul 14 2005.
[70] P. Carmeliet, "Blood vessels and nerves: common signals, pathways and diseases," Nat Rev Genet, vol. 4, pp. 710-20, Sep 2003.
[71] I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, et al., "Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis," J Biol Chem, vol. 283, pp. 13905-12, May 16 2008.
[72] A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device," Lab Chip, vol. 8, pp. 1292-9, Aug 2008.
[73] I. Barkefors, S. Thorslund, F. Nikolajeff, and J. Kreuger, "A fluidic device to study directional angiogenesis in complex tissue and organ culture models," Lab Chip, vol. 9, pp. 529-35, Feb 21 2009.
[74] N. Boudreau and M. J. Bissell, "Extracellular matrix signaling: integration of form and function in normal and malignant cells," Curr Opin Cell Biol, vol. 10, pp. 640-6, Oct 1998.
[75] E. Cukierman, R. Pankov, and K. M. Yamada, "Cell interactions with three-dimensional matrices," Curr Opin Cell Biol, vol. 14, pp. 633-9, Oct 2002.
[76] E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science, vol. 294, pp. 1708-12, Nov 23 2001.
[77] F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, et al., "Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology," Proceedings of the National Academy of Sciences, vol. 95, pp. 14821-14826, December 8, 1998 1998.
[78] I. Grigorieva, X. Thomas, and J. Epstein, "The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone," Exp Hematol, vol. 26, pp. 597-603, Jul 1998.
[79] V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, et al., "Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies," J Cell Biol, vol. 137, pp. 231-45, Apr 7 1997.
[80] A. Birgersdotter, R. Sandberg, and I. Ernberg, "Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems," Semin Cancer Biol, vol. 15, pp. 405-12, Oct 2005.
[81] J. Taipale and J. Keski-Oja, "Growth factors in the extracellular matrix," FASEB J, vol. 11, pp. 51-9, Jan 1997.
[82] F. G. Giancotti and E. Ruoslahti, "Integrin signaling," Science, vol. 285, pp. 1028-32, Aug 13 1999.
[83] S. Even-Ram and K. M. Yamada, "Cell migration in 3D matrix," Curr Opin Cell Biol, vol. 17, pp. 524-32, Oct 2005.
[84] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, pp. 627-35, Oct 2007.
[85] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, et al., "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, pp. 10910-2, Oct 23 2007.
[86] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, pp. 269-75, Jan 21 2009.
[87] C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead, and C. Fischbach, "Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis," Integr Biol (Camb), vol. 1, pp. 587-94, Oct 2009.
[88] A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, "Printing Patterns of Proteins," Langmuir, vol. 14, pp. 2225-2229, 1998/04/01 1998.
[89] L. E. Dickinson, C. Lutgebaucks, D. M. Lewis, and S. Gerecht, "Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro," Lab Chip, vol. 12, pp. 4244-8, Nov 7 2012.
[90] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, et al., "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proc Natl Acad Sci U S A, vol. 97, pp. 2408-13, Mar 14 2000.
[91] N. E. Sanjana and S. B. Fuller, "A fast flexible ink-jet printing method for patterning dissociated neurons in culture," J Neurosci Methods, vol. 136, pp. 151-63, Jul 30 2004.
[92] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, pp. 1146-53, Sep 2007.
[93] D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, "Dielectrophoretic registration of living cells to a microelectrode array," Biosens Bioelectron, vol. 19, pp. 1765-74, Jul 15 2004.
[94] D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, "Photo- and electropatterning of hydrogel-encapsulated living cell arrays," Lab Chip, vol. 5, pp. 111-8, Jan 2005.
[95] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A microfabrication-based dynamic array cytometer," Anal Chem, vol. 74, pp. 3984-90, Aug 15 2002.
[96] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab Chip, vol. 6, pp. 724-34, Jun 2006.
[97] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-2, Jul 21 2005.
[98] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, pp. 3251-3256, // 1997.
[99] http://tcpa.taiwan-pharma.org.tw/node/16931.
[100] http://www2.cch.org.tw/lungcancer/LC_therapy%20summary.htm.
[101] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, "Dielectrophoretic sorting of particles and cells in a microsystem," Anal Chem, vol. 70, pp. 1909-15, May 1 1998.
[102] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, pp. 1973-83, Jul 2002.
[103] ATCC: The Global Bioresource Center.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *