|
[1] T. K. Hunt, D. R. Knighton, K. K. Thakral, W. H. Goodson, 3rd, and W. S. Andrews, "Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages," Surgery, vol. 96, pp. 48-54, Jul 1984. [2] L. P. K. Reynolds, S. D. ; Redmer, D. A., "Angiogenesis in the female reproductive system.," The FASEB Journal, vol. 6, pp. 886-892, 1992. [3] M. Greenblatt and P. Shubi, "Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique," J Natl Cancer Inst, vol. 41, pp. 111-24, Jul 1968. [4] J. Folkman, "Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, pp. 1182-6, Nov 18 1971. [5] D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara, "Vascular endothelial growth factor is a secreted angiogenic mitogen," Science, vol. 246, pp. 1306-9, Dec 8 1989. [6] D. Shweiki, A. Itin, D. Soffer, and E. Keshet, "Vascular Endothelial Growth-Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis," Nature, vol. 359, pp. 843-845, Oct 29 1992. [7] C. D. Bingle and C. J. Craven, "PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx," Hum Mol Genet, vol. 11, pp. 937-43, Apr 15 2002. [8] D. Hanahan and J. Folkman, "Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis," Cell, vol. 86, pp. 353-364, Aug 9 1996. [9] V. Schirrmacher, "Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies," Adv Cancer Res, vol. 43, pp. 1-73, 1985. [10] C. L. Helm, M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz, "Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism," Proc Natl Acad Sci U S A, vol. 102, pp. 15779-84, Nov 1 2005. [11] N. Yamamura, R. Sudo, M. Ikeda, and K. Tanishita, "Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells," Tissue Eng, vol. 13, pp. 1443-53, Jul 2007. [12] M. H. Zaman, L. M. Trapani, A. Siemeski, D. MacKellar, H. Gong, R. D. Kamm, et al., "Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis (vol 103, pg 10889, 2006)," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 13897-13897, Sep 12 2006. [13] J. Folkman, "Angiogenesis: an organizing principle for drug discovery?," Nat Rev Drug Discov, vol. 6, pp. 273-86, Apr 2007. [14] C. M. Ghajar, K. S. Blevins, C. C. Hughes, S. C. George, and A. J. Putnam, "Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation," Tissue Eng, vol. 12, pp. 2875-88, Oct 2006. [15] R. Hallmann, N. Horn, M. Selg, O. Wendler, F. Pausch, and L. M. Sorokin, "Expression and function of laminins in the embryonic and mature vasculature," Physiol Rev, vol. 85, pp. 979-1000, Jul 2005. [16] G. Bix and R. V. Iozzo, "Novel interactions of perlecan: unraveling perlecan's role in angiogenesis," Microsc Res Tech, vol. 71, pp. 339-48, May 2008. [17] K. Hayashi, J. A. Madri, and P. D. Yurchenco, "Endothelial-Cells Interact with the Core Protein of Basement-Membrane Perlecan through Beta-1 and Beta-3 Integrins - an Adhesion Modulated by Glycosaminoglycan," Journal of Cell Biology, vol. 119, pp. 945-959, Nov 1992. [18] C. Sundberg, J. A. Nagy, L. F. Brown, D. Feng, I. A. Eckelhoefer, E. J. Manseau, et al., "Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery," Am J Pathol, vol. 158, pp. 1145-60, Mar 2001. [19] R. G. Rowe and S. J. Weiss, "Breaching the basement membrane: who, when and how?," Trends Cell Biol, vol. 18, pp. 560-74, Nov 2008. [20] S. H. Chang, K. Kanasaki, V. Gocheva, G. Blum, J. Harper, M. A. Moses, et al., "VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation," Cancer Res, vol. 69, pp. 4537-44, May 15 2009. [21] R. F. Nicosia and J. A. Madri, "The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model," Am J Pathol, vol. 128, pp. 78-90, Jul 1987. [22] D. S. Grant and H. K. Kleinman, "Regulation of capillary formation by laminin and other components of the extracellular matrix," EXS, vol. 79, pp. 317-33, 1997. [23] L. E. Benjamin, D. Golijanin, A. Itin, D. Pode, and E. Keshet, "Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal," J Clin Invest, vol. 103, pp. 159-65, Jan 1999. [24] D. Walpita and E. Hay, "Studying actin-dependent processes in tissue culture," Nat Rev Mol Cell Biol, vol. 3, pp. 137-41, Feb 2002. [25] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, pp. 211-24, Mar 2006. [26] K. M. Yamada and E. Cukierman, "Modeling tissue morphogenesis and cancer in 3D," Cell, vol. 130, pp. 601-10, Aug 24 2007. [27] M. H. Zaman, L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, et al., "Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis," Proc Natl Acad Sci U S A, vol. 103, pp. 10889-94, Jul 18 2006. [28] A. Shamloo and S. C. Heilshorn, "Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients," Lab Chip, vol. 10, pp. 3061-8, Nov 21 2010. [29] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device," Lab Chip, vol. 5, pp. 401-6, Apr 2005. [30] J. Y. Park, C. M. Hwang, S. H. Lee, and S. H. Lee, "Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient," Lab Chip, vol. 7, pp. 1673-80, Dec 2007. [31] K. Gupta, D. H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab Chip, vol. 10, pp. 2019-31, Aug 21 2010. [32] F. Lin, C. M. Nguyen, S. J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration," Biochem Biophys Res Commun, vol. 319, pp. 576-81, Jun 25 2004. [33] G. N. Li, J. Liu, and D. Hoffman-Kim, "Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth," Ann Biomed Eng, vol. 36, pp. 889-904, Jun 2008. [34] C. Joanne Wang, X. Li, B. Lin, S. Shim, G. L. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab Chip, vol. 8, pp. 227-37, Feb 2008. [35] C. R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, pp. 497-507, Feb 7 2011. [36] F. Lin, "Chapter 15. A microfluidics-based method for chemoattractant gradients," Methods Enzymol, vol. 461, pp. 333-47, 2009. [37] A. D. van der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes, "A microfluidic wound-healing assay for quantifying endothelial cell migration," Am J Physiol Heart Circ Physiol, vol. 298, pp. H719-25, Feb 2010. [38] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates," Hum Reprod, vol. 25, pp. 613-22, Mar 2010. [39] S. J. Wang, W. Saadi, F. Lin, C. Minh-Canh Nguyen, and N. Li Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis," Exp Cell Res, vol. 300, pp. 180-9, Oct 15 2004. [40] W. Saadi, S. J. Wang, F. Lin, and N. L. Jeon, "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis," Biomed Microdevices, vol. 8, pp. 109-18, Jun 2006. [41] B. Mosadegh, W. Saadi, S. J. Wang, and N. L. Jeon, "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients," Biotechnol Bioeng, vol. 100, pp. 1205-13, Aug 15 2008. [42] S. Nandagopal, D. Wu, and F. Lin, "Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields," PLoS One, vol. 6, p. e18183, 2011. [43] S. Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," J Exp Med, vol. 115, pp. 453-66, Mar 1 1962. [44] D. Zicha, G. A. Dunn, and A. F. Brown, "A new direct-viewing chemotaxis chamber," J Cell Sci, vol. 99 ( Pt 4), pp. 769-75, Aug 1991. [45] S. H. Zigmond and J. G. Hirsch, "Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor," J Exp Med, vol. 137, pp. 387-410, Feb 1 1973. [46] M. Kim and T. Kim, "Diffusion-Based and Long-Range Concentration Gradients of Multiple Chemicals for Bacterial Chemotaxis Assays," Analytical Chemistry, vol. 82, pp. 9401-9409, 2010/11/15 2010. [47] J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips," Nature, vol. 442, pp. 403-11, Jul 27 2006. [48] H. C. Sadava D, et al. (2009). Life: the science of biology, Sinauer and M. Associates Inc. [49] K. Francis and B. O. Palsson, "Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion," Proc Natl Acad Sci U S A, vol. 94, pp. 12258-62, Nov 11 1997. [50] T. M. Keenan and A. Folch, "Biomolecular gradients in cell culture systems," Lab Chip, vol. 8, pp. 34-57, Jan 2008. [51] S. Toetsch, P. Olwell, A. Prina-Mello, and Y. Volkov, "The evolution of chemotaxis assays from static models to physiologically relevant platforms," Integr Biol (Camb), vol. 1, pp. 170-81, Feb 2009. [52] B. G. Chung and J. Choo, "Microfluidic gradient platforms for controlling cellular behavior," Electrophoresis, vol. 31, pp. 3014-27, Sep 2010. [53] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, pp. 826-30, Aug 2002. [54] J. Ruan, L. Wang, M. Xu, D. Cui, X. Zhou, and D. Liu, "Fabrication of a microfluidic chip containing dam, weirs and gradient generator for studying cellular response to chemical modulation," Materials Science and Engineering: C, vol. 29, pp. 674-679, 4/30/ 2009. [55] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays," Biotechnol Bioeng, vol. 89, pp. 1-8, Jan 5 2005. [56] P. J. Lee, P. J. Hung, V. M. Rao, and L. P. Lee, "Nanoliter scale microbioreactor array for quantitative cell biology," Biotechnol Bioeng, vol. 94, pp. 5-14, May 5 2006. [57] T. I. Moore, C. S. Chou, Q. Nie, N. L. Jeon, and T. M. Yi, "Robust spatial sensing of mating pheromone gradients by yeast cells," PLoS One, vol. 3, p. e3865, 2008. [58] C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes, "A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics," Lab Chip, vol. 9, pp. 545-54, Feb 21 2009. [59] J. Atencia, G. A. Cooksey, and L. E. Locascio, "A robust diffusion-based gradient generator for dynamic cell assays," Lab Chip, vol. 12, pp. 309-16, Jan 21 2012. [60] D. Irimia, G. Charras, N. Agrawal, T. Mitchison, and M. Toner, "Polar stimulation and constrained cell migration in microfluidic channels," Lab Chip, vol. 7, pp. 1783-90, Dec 2007. [61] G. M. Walker, H. C. Zeringue, and D. J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, pp. 91-7, Apr 2004. [62] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, pp. 3379-85, Sep 8 2010. [63] J. Atencia, J. Morrow, and L. E. Locascio, "The microfluidic palette: a diffusive gradient generator with spatio-temporal control," Lab Chip, vol. 9, pp. 2707-14, Sep 21 2009. [64] M. Morel, J. C. Galas, M. Dahan, and V. Studer, "Concentration landscape generators for shear free dynamic chemical stimulation," Lab Chip, vol. 12, pp. 1340-6, Apr 7 2012. [65] E. Cimetta, C. Cannizzaro, R. James, T. Biechele, R. T. Moon, N. Elvassore, et al., "Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling," Lab Chip, vol. 10, pp. 3277-83, Dec 7 2010. [66] M. E. Brett, R. DeFlorio, D. E. Stone, and D. T. Eddington, "A microfluidic device that forms and redirects pheromone gradients to study chemotropism in yeast," Lab Chip, vol. 12, pp. 3127-34, Sep 7 2012. [67] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nat Med, vol. 6, pp. 389-95, Apr 2000. [68] R. K. Jain, "Molecular regulation of vessel maturation," Nat Med, vol. 9, pp. 685-93, Jun 2003. [69] P. Carmeliet and M. Tessier-Lavigne, "Common mechanisms of nerve and blood vessel wiring," Nature, vol. 436, pp. 193-200, Jul 14 2005. [70] P. Carmeliet, "Blood vessels and nerves: common signals, pathways and diseases," Nat Rev Genet, vol. 4, pp. 710-20, Sep 2003. [71] I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, et al., "Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis," J Biol Chem, vol. 283, pp. 13905-12, May 16 2008. [72] A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device," Lab Chip, vol. 8, pp. 1292-9, Aug 2008. [73] I. Barkefors, S. Thorslund, F. Nikolajeff, and J. Kreuger, "A fluidic device to study directional angiogenesis in complex tissue and organ culture models," Lab Chip, vol. 9, pp. 529-35, Feb 21 2009. [74] N. Boudreau and M. J. Bissell, "Extracellular matrix signaling: integration of form and function in normal and malignant cells," Curr Opin Cell Biol, vol. 10, pp. 640-6, Oct 1998. [75] E. Cukierman, R. Pankov, and K. M. Yamada, "Cell interactions with three-dimensional matrices," Curr Opin Cell Biol, vol. 14, pp. 633-9, Oct 2002. [76] E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science, vol. 294, pp. 1708-12, Nov 23 2001. [77] F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, et al., "Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology," Proceedings of the National Academy of Sciences, vol. 95, pp. 14821-14826, December 8, 1998 1998. [78] I. Grigorieva, X. Thomas, and J. Epstein, "The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone," Exp Hematol, vol. 26, pp. 597-603, Jul 1998. [79] V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, et al., "Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies," J Cell Biol, vol. 137, pp. 231-45, Apr 7 1997. [80] A. Birgersdotter, R. Sandberg, and I. Ernberg, "Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems," Semin Cancer Biol, vol. 15, pp. 405-12, Oct 2005. [81] J. Taipale and J. Keski-Oja, "Growth factors in the extracellular matrix," FASEB J, vol. 11, pp. 51-9, Jan 1997. [82] F. G. Giancotti and E. Ruoslahti, "Integrin signaling," Science, vol. 285, pp. 1028-32, Aug 13 1999. [83] S. Even-Ram and K. M. Yamada, "Cell migration in 3D matrix," Curr Opin Cell Biol, vol. 17, pp. 524-32, Oct 2005. [84] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, pp. 627-35, Oct 2007. [85] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, et al., "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, pp. 10910-2, Oct 23 2007. [86] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, pp. 269-75, Jan 21 2009. [87] C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead, and C. Fischbach, "Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis," Integr Biol (Camb), vol. 1, pp. 587-94, Oct 2009. [88] A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, "Printing Patterns of Proteins," Langmuir, vol. 14, pp. 2225-2229, 1998/04/01 1998. [89] L. E. Dickinson, C. Lutgebaucks, D. M. Lewis, and S. Gerecht, "Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro," Lab Chip, vol. 12, pp. 4244-8, Nov 7 2012. [90] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, et al., "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proc Natl Acad Sci U S A, vol. 97, pp. 2408-13, Mar 14 2000. [91] N. E. Sanjana and S. B. Fuller, "A fast flexible ink-jet printing method for patterning dissociated neurons in culture," J Neurosci Methods, vol. 136, pp. 151-63, Jul 30 2004. [92] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, pp. 1146-53, Sep 2007. [93] D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, "Dielectrophoretic registration of living cells to a microelectrode array," Biosens Bioelectron, vol. 19, pp. 1765-74, Jul 15 2004. [94] D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, "Photo- and electropatterning of hydrogel-encapsulated living cell arrays," Lab Chip, vol. 5, pp. 111-8, Jan 2005. [95] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A microfabrication-based dynamic array cytometer," Anal Chem, vol. 74, pp. 3984-90, Aug 15 2002. [96] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab Chip, vol. 6, pp. 724-34, Jun 2006. [97] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-2, Jul 21 2005. [98] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, pp. 3251-3256, // 1997. [99] http://tcpa.taiwan-pharma.org.tw/node/16931. [100] http://www2.cch.org.tw/lungcancer/LC_therapy%20summary.htm. [101] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, "Dielectrophoretic sorting of particles and cells in a microsystem," Anal Chem, vol. 70, pp. 1909-15, May 1 1998. [102] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, pp. 1973-83, Jul 2002. [103] ATCC: The Global Bioresource Center.
|