|
[1] S. Y. Elhabian, K. M. El-Sayed* and S. H. Ahmed, “Moving object detection in spatial domain using background removal techniques - State-of-Art,” Recent Patents on Computer Science, vol.1, pp. 32-54, 2008. [2] JR. Martin “A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm,” Behavioural Processes, vol. 67, pp. 207-219, 2004. [3] N. Dimitrijevic, S. Dzitoyeva and H. ManevAn, “Automated assay of the behavioral effects of cocaine injections in adult Drosophila,” Journal of Neuroscience Methods, vol. 137, pp. 181-184, 2004. [4] R. B. Ramazani, H. R. Krishnan, S. E. Bergeson and N. S. Atkinson, “Computer automated movement detection for the analysis of behavior,” Journal of Neuroscience Methods, vol. 162, pp. 171-179, 2007. [5] K. Branson, A. Robie, J. Bender, P. Perona and M. H. Dickinson, “High-throughput ethomics in large groups of Drosophila,” Nature Methods, vol. 6, pp. 451-457, 2009. [6] J. Schneidera, M. H. Dickinsonb and J. D. Levinea, “Social structures depend on innate determinants and chemosensory processing in Drosophila,” Proceedings of the National Academy of Sciences, vol. 109, pp. 17174-17179, 2012. [7] P. Fan, D. S. Manoli, O. M. Ahmed, Y. Chen, N. Agarwa, S. Kwong, A. G. Cai, J. Neitz, A. Renslo, B. S. Baker, and N. M. Shah, “Genetic and neural mechanisms that inhibit Drosophila from mating with other species,” Cell, vol. 154, pp. 89-102, 2013. [8] K. Mikolajczyk, B. Leibe, and B. SchieleLocal, “Features for Object Class Recognition,” Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1792–1799, 2005. [9] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” International Journal of Computer Vision (IJCV), vol. 60, pp. 63–86, 2004. [10] C. Harris and M. Stephens, “A Combined Corner and Edge Detector”, Proceedings of 4th Alvey Vision Conference, pp. 147-151, 1988. [11] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision (IJCV), vol. 60, pp. 91–110, 2004. [12] T. Kadir and M. Brady, “Scale, Saliency and Image Description,” International Journal of Computer Vision (IJCV), vol. 45, pp. 83–105, 2001. [13] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust wide baseline stereo from maximally stable extremal regions,” Proceedings of the British Machine Vision Conference (BMVC), pp. 36.1–36.10, 2002. [14] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 27, pp. 1615-1630, 2005. [15] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha, “Real-time visual concept classification,” IEEE Transactions on Multimedia, vol. 12, pp. 665-681, 2010. [16] J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations," Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297, 1967. [17] K. E. A. Van De Sande, T. Gevers, and C. G. M. Snoek, “Empowering visual categorization with the GPU,” IEEE Transactions on Multimedia, vol. 13, pp. 60-70, 2011. [18] L. Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5- 32, 2001. [19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large vocabularies and fast spatial matching,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-8, 2007 [20] D. Nist´er and H. Stew´enius, “Scalable Recognition with a Vocabulary Tree,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2161-2168, 2006. [21] G. Csurka, C. R. Dance, L. Fan, J. Willamowski and C. Bray, ” Visual Categorization with Bags of Keypoints,” Workshop on statistical learning in computer vision, pp. 1-22, 2004. [22] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to object matching in videos,” Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1470-1477, 2003. [23] L. Zhu, A. Rao and A. Zhang, “Theory of keyblock-based image retrieval,” ACM Transactions on Information Systems, vol. 20, pp. 224-257, 2002. [24] H. Jegou, M. Douze and C. Schmid, “Packing bag-of-features,” Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2357-2364, 2009. [25] S. Lazebnik, C. Schmid and J. Ponce, “Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2169-2178, 2006. [26] K. Grauman and T. Darrell, “The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features,” Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1458-1465, 2005. [27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995. [28] T. Cover and P. Hart, “Nearest Neighbor Pattern Classification,” IEEE Transactions on Information Theory, pp. 21-27, 1967. [29] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, pp. 81-106, 1986. [30] Y. Yang and X. Liu, “A Re-Examination of Text Categorization Methods,” ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 42-49, 1999. [31] J. Kim, B. Kim and S. Savarese, “Comparing Image Classification Methods: K-Nearest-Neighbor and Support-Vector-Machines,” Proceedings of the 2012 American conference on Applied Mathematics, pp. 133-138, 2012. [32] C. Demirkesen and H. Cherifi, “A Comparison of Multiclass SVM Methods for Real World Natural Scenes,” International Conference on Advanced Concepts for Intelligent Vision Systems, 2008. [33] R. Zhao, W. Ouyang and X. Wang, "Unsupervised Salience Learning for Person Re-identification," IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3586-3593, 2013.
|