帳號:guest(18.118.93.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖桂田
作者(外文):Liao, Kuei-Tien
論文名稱(中文):磁性複合微結構之微波特性研究
論文名稱(外文):Microwave Behaviors of Magnetic Composite Microstructures
指導教授(中文):衛榮漢
賴梅鳳
口試委員(中文):賴俊陽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033605
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:66
中文關鍵詞:交換耦合複合材料鐵磁共振磁性微結構背導式共平面波導
外文關鍵詞:exchange coupled composite mediaferromagnetic resonancemagnetic micro structureconductor-back coplanar waveguide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:441
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來交換耦合複合材料應用於磁記憶體中越趨廣泛,如何製作新穎的複合材料用以降低記憶體運作所需功率與雜訊為重要的議題。本研究設計之複合材料在磁性材料上增加高異向性之磁膜陣列,並利用背導式共平面波導做為鐵磁共振量測平台,針對圖形化磁性微結構進行單層與雙層樣品研究。利用具形狀異向性之磁膜的磁區分布與其下方連續膜的交互耦合作用,可於鐵磁共振頻譜中明顯觀察不同磁性材料磁區與磁膜邊界造成共振頻率的牽引,其中NiFe薄膜具有較強烈的磁矩束縛能力,不論是圖形化磁膜亦或是連續膜都具有相較於Co薄膜更為顯著的自旋共振耦合,因此本研究確立有效的鐵磁共振效應量測架構,並成功以巨觀角度下顯示本研究設計之複合材料間耦合效應。

關鍵字:交換耦合複合材料、鐵磁共振、磁性微結構、背導式共平面波導
The study of exchange coupled composite (ECC) media has become a significant aspect in magnetic recording during the past decades. It is an important issue that how to produce a novel composite material to reduce the power and noise as the memory is in operation. In this paper, the materials composed of continuous film and periodic arrays are detected magnetization precession by conductor-back coplanar waveguide (CBCPW). It is obvious that the shape anisotropy and the domains distribution on the top layer are the causes of the exchange coupling shown in the ferromagnetic resonance spectrum. Furthermore, NiFe is one kind of harder spin coupling material compared with Co not only to make into thin film but the patterns. In the research, we establish an effective measurement system of ferromagnetic resonance and successfully make a comprehensive survey on the internal coupling effect of composite material.

Key words: exchange coupled composite media、ferromagnetic resonance、magnetic micro structure、conductor-back coplanar waveguide
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
符號 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 架構規劃 3
第二章 原理與文獻回顧 4
2.1 磁性材料 4
2.1.1 磁矩 5
2.1.2 磁化動態 6
2.1.3 磁區與磁壁 7
2.1.4 鐵磁性材料 8
2.1.5 磁異向性 10
2.2 自旋波 12
2.3 鐵磁共振 12
2.4 傳輸線理論 14
2.4.1 集膚效應 15
2.4.2 阻抗匹配 16
2.4.3 散射參數 16
2.5 文獻回顧 18
第三章 研究方法 23
3.1 傳輸線設計 23
3.2 多形態磁結構鐵磁共振研究 25
3.2.1 系統架設 25
3.2.2 樣品製備 26
第四章 實驗結果與討論 28
4.1 傳輸線製作與量測結果 28
4.2 二維橢圓陣列長寬比鐵磁共振效應 29
4.3 多形態磁結構鐵磁共振量測結果 32
4.3.1 正弦波陣列多層耦合效應 32
4.3.2 二維橢圓陣列多層耦合效應 47
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 60


[1] S. A. Wolf, D. D. Awshalom, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science, vol. 294, pp. 1488-1495, 2001.
[2] B. D. Terris and T. Thomson, “Nanofabricated and self-assembled magnetic structures as data storage media,” Journal of Physics D, vol. 38, pp. 199-222, 2005.
[3] R. P. Cowburn and M. E. Welland, “Room temperature magnetic quantum cellular automata,” Science, vol. 287, pp. 1466-1468, 2000.
[4] R. Engel-Herbert, S. A. Haque, and T. Hesjedala, “Systematic investigation of permalloy nanostructures for magnetologic applications,” Journal of Applied Physics, vol. 101, p. 09F503, 2007.
[5] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeabilityin ferromagnetic bodies,” Phys. Z. Sowjetunion, vol. 8, pp. 153-169, 1935.
[6] B. D. Cullity, Introduction to Magnetic Materials, New York: Addison Wesley, 1972.
[7] D. K. Cheng, Field and Wave Electromagnetics, 3rd edition, New York: Addison-Wesley, 1989.
[8] D. J. Griffiths, Introduction to Electrodynamics, New York: Prentice Hall, 1981.
[9] C. Kittle, Introduction to solid state physics, 7th edition.
[10] M. Hanson, C. Johansson, B. Nilsson, P. Isberg, and R. Wäppling, “Magnetic properties of two-dimensional arrays of epitaxial Fe (001) submicron particles,” Journal of Applied Physics, vol. 85, pp. 2793-2799, 1999.
[11] F. Bloch, “Zur Theorie des Ferromagnetismus,” Zeitschrift für Physik, vol. 61, pp. 206-219, 1930.
[12] J. V. Vleck, “Concerning the theory of ferromagnetic resonance absorption,” Physical Review, vol. 78, pp. 266-274, 1950.
[13] D. M. Pozar, Microwave Engineering, 3rd edition. New York: John Wiley & Sons, Inc. 2005, pp. 170-174.
[14] K. Chang, RF and Microwave Wireless System. New York: John Wiley & Sons, Inc. 2000.
[15] O. Heaviside, “Electromagnetic induction and its propagation,” The Electrician, vol. 18, p. 252, 1885.
[16] V. Belevitch, “Summary of the history of circuit theory,” Proceedings of the IRE, vol.50, pp. 848–855, 1962.
[17] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Transactions on Microwave Theory and Techniques, vol.13, pp. 194-202, 1965.
[18] R. E. Camley and D. L. Mills, “Theory of microwave propagation in dielectric/magnetic film multilayer structures,” Journal of Applied Physics, vol. 82, p. 3058, 1997.
[19] S. T. Purcell, B. Heinrich, and A. S. Arrott, “Perpendicular anisotropy at the (001) surface of bulk Fe single crystals,” Journal of Applied Physics, vol. 64, p. 5337, 1988.
[20] Z. Frait and D. Fraitova, “Ferromagnetic-resonance and surface anisotropy in iron single-crystals,” Journal of Magnetism and Magnetic Materials, vol. 15, pp. 1081-1082, 1990.
[21] R. Arias and D. L. Mills, “Extrinsic contributions to the ferromagnetic resonance response of ultrathin films,” Physical Review B, vol. 60, pp.7395-7409, 1999.
[22] S. Neusser and D. Grundler, “Magnonics: Spin waves on the nanoscale,” Advanced Material. vol. 21, pp. 2927–2932, 2009.
[23] K. S. Buchanan, P. E. Roy, F. Y. Fradin, K. Yu. Guslienko, and M. Grimsditch, “Vortex dynamics in patterned ferromagnetic ellipses,” Journal of Applied Physics, vol. 99, p. 08C707, 2006.
[24] K. S. Buchanan, P. E. Roy, M Grimsditch, F. Y. Fradin, K. Yu. Guslienko, S. D. Bader, and V. Novosad, “Soliton-pair dynamics in patterned ferromagnetic ellipses,” Nature Physics, vol. 1, pp. 172-176, 2005.
[25] G. Gubbiotti, M. Madami, S. Tacchi, G. Carlotti, M. Pasquale, N. Singh, S. Goolaup, and A. O. Adeyeye, “Field evolution of the magnetic normal modes in elongated permalloy nanometric rings,” Journal of Physics: Condensed Matter, vol. 19, p. 406229, 2007.
[26] F. Giesen, J. Podbielski, T. Korn, M. Steiner, and A. van Staa, “Hysteresis and control of ferromagnetic resonances in rings,” Applied Physics Letters, vol. 86, p. 112510, 2005.
[27] K. Y. Guslienko, A. N. Slavin, V. Tiberkevic, and S. K. Kim, “Dynamic origin of azimuthal modes splitting in vortex-state magnetic dots,” Physical Review Letter, vol.101, p. 247203, 2008.
[28] S. Neusser, G. Duerr, H. G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C. H. Back, and D. Grundler, “Anisotropic propagation and damping of spinwaves in a nanopatterned antidot lattice,” Physical Review Letter, vol. 105, p. 067208, 2010.
[29] S. Neusser, B. Botters, and D. Grundler, “Localization, confinement and field-controlled propagation of spin waves in Ni80Fe20 antidot lattices,” Physical Review B, vol. 78, p. 054406, 2008.
[30] D. Grundler, J. Topp, and D. Heitmann, “Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays,” Physical Review B, vol. 80, p. 174421, 2009.
[31] M. Pardavi-Horvath, B. G. Ng, F. J. Castaño, H. S. Körner, C. Garcia, and C. A. Ross, “Angular dependence of ferromagnetic resonance and magnetization configuration of thin film permalloy nanoellipse arrays,” Journal of Applied Physics, vol. 110, p. 053921, 2011.
[32] S. Neusser, G. Duerr, S. Tacchi, M. Madami, M. L. Sokolovskyy, G. Gubbiotti, M. Krawczyk, and D. Grundler, “Magnonic minibands in antidot lattices with large spin-wave propagation velocities,” Physical Review B, vol. 84, p. 094454, 2011.
[33] G. Duerr, R. Huber, and D. Grundler, “Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurations,” Journal of Physics: Condensed Matter, vol. 24, p. 024218, 2012.
[34] E. K. Semenova, F. Montoncello, S. Tacchi, G. Dürr, E. Sirotkin, E. Ahmad, M. Madami, G. Gubbiotti, S. Neusser, D. Grundler, F. Y. Ogrin, R. J. Hicken, V. V. Kruglyak, D. V. Berkov, N. L. Gorn, and L. Giovannini, “Magnetodynamical response of large-area close-packed arrays of circular dots fabricated by nanosphere lithography,” Physical Review B, vol. 87, p. 174432, 2013.
[35] E. F. Kneller and R. Hawig, “The exchange-spring magnet: a new material principle for permanent magnets,” IEEE Transactions on Magnetics, vol. 27, pp. 3588–3600, 1991.
[36] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, vol. 420, pp. 395-398, 2002.
[37] R. H. Victora and X. Shen, “Composite media for perpendicular magnetic recording,” IEEE Transactions on Magnetics, vol. 41, pp. 537-542, 2005.
[38] W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and J. P. Wang, “Composite perpendicular magnetic recording media using [Co/PdSi]2 as a hard layer and FeSiO as a soft layer,” Journal of Applied Physics, vol. 97, p. 10N513, 2005.
[39] R. H. Victora and X. Shen, “Exchange Coupled Composite Media for Perpendicular Magnetic Recording,” IEEE Transactions on Magnetics, vol. 41, pp. 2828-2833, 2005.
[40] D. C. Crew, K. J. Kennewell, M. J. Lwin, R. C. Woodward, S. Prasad, and R. L. Stamps, “Optic and acoustic modes measured in a cobalt/permalloy exchange spring bilayer using inductive magnetometry,” Journal of Applied Physics, vol. 97, p. 10A707, 2005.
[41] F. Hoffmann, “Dynamic pinning induced by nickel layers on permalloy films,” Physica Status Solidi (b), vol. 41, pp. 807-813, 1970.
[42] T. Hauet, E. Dobisz, S. Florez, J. Park, B. Lengsfield, B. D. Terris, and O. Hellwig, “Role of reversal incoherency in reducing switching field and switching field distribution of exchange coupled composite bit patterned media,” American Institute of Physics, vol. 95, p. 262504, 2009.
[43] D. Makarov, J. Lee, C. Brombacher, C. Schubert, M. Fuger, D. Suess, J. Fidler, and M. Albrecht, “Perpendicular FePt-based exchange-coupled composite media,” Applied Physics Letters, vol. 96, p. 062501, 2010.
[44] F. Maciàa, P. Warnickeb, D. Bedaua, M. Y. Imc, P. Fischerc, D. A. Arenab, and A. D. Kenta, “Perpendicular magnetic anisotropy in ultrathin Co/Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy,” Journal of Magnetism and Magnetic Materials, vol. 324, pp. 3629-3632, 2010.
[45] N. H. G. Grenda, P. A. Hyde, Y. S. Gui, M. P. Wismayer, J. D. A. Jung, C-M Hu, B. W. Southern, and K-W Lin, “Angular dependence of ferromagnetic resonance measurements in exchange coupled Ni80Fe20/NiO bilayers,” Journal of Physics D: Applied Physics, vol. 46, p. 205002, 2013.
[46] R. Dutra, D. E. Gonzalez-Chavez, T. L. Marcondes, A. M. H. de Andrade, J. Geshev, and R. L. Sommer, “Rotatable anisotropy of Ni81Fe19/Ir20Mn80 films: A study using broadband ferromagnetic resonance,” Journal of Magnetism and Magnetic Materials, vol. 346, pp.1-4, 2013.
[47] L. S. Huang, J. F. Hu, B. Y. Zong, S. W. Zeng, Ariando, and J. S. Chen, “Magnetic properties of L10-FePt/Fe exchange-coupled composite nanodots,” Journal of Physics D: Applied Physics, vol. 47, p. 245001, 2014.
[48] C.C. Tien, C.K.C. Tzuang, S.T. Peng, and C.C. Chang, “Transmission characteristics of finite-width conductor-backed coplanar waveguide,” IEEE Trans. MTT, vol. 41, pp. 1616-1625, 1993.
[49] E. El-Sharawy, “Multilayer coplanar waveguide for high speed digital applications,” IEEE MTT-S Digest, pp. 979-982, 1992.
[50] G. Ghione and C. U. Naldi, “Coplanar waveguides for MMIC applications: effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling,” IEEE Transactions on Microwave Theory and Techniques, vol. 35, pp. 260-267, 1987.
[51] P. Anders and F. Arndt, “Moment method of designing matched microstrip bends,” 9th European Microwave Conference Proceedings, pp. 430-434, 1979.
[52] T. Sebastian, A. Conca, G. Wolf, B. Leven, and B. Hillebrands, “All optical investigation of the shape anisotropy of individual micron sized Ni80Fe20 elements,” AG Magnetismus Tu Kaiserslautern, pp. 124-128, 2010.
[53] K. J. Kennewell, M. Kostylev, N. Ross, R. Magaraggia, R. L. Stamps, M. Ali, A. A. Stashkevich, D. Greig, and B. J. Hickey, “Magnetization pinning at a Py/Co interface measured using broadband inductive magnetometry,” Journal of Applied Physics, vol. 108, p. 073917, 2010.
[54] M. Kostylev, “Strong asymmetry of microwave absorption by bilayer conducting ferromagnetic films in the microstrip-line based broadband ferromagnetic resonance,” Journal of Applied Physics, vol. 106, p. 043903, 2009.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *