帳號:guest(3.144.244.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳承佑
作者(外文):Wu,Cheng Yu
論文名稱(中文):模造玻璃鏡片之波前像差量測與分析
論文名稱(外文):Measurement and Analysis of Wavefront Aberrations in Molded Glass Lenses
指導教授(中文):王培仁
指導教授(外文):Wang,Pei Jen
口試委員(中文):張國文
羅丞曜
口試委員(外文):Chang,Kuo Wen
Lo,Cheng Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033601
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:折射率模造玻璃波前感測器退火
外文關鍵詞:Molded GlassAberrationsWavefront SensorsAnnealing
相關次數:
  • 推薦推薦:66
  • 點閱點閱:575
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
常用光學鏡片的製造材料分為光學高分子及陶瓷玻璃兩類,因高分子材料具低成本量產優勢,故在小尺寸光學鏡片應用上佔絕大市場,伴隨著產品品質的提升需求,採用陶瓷玻璃的光學鏡片需求增加,以模造玻璃製程技術生產高品質光學鏡片成為近年技術發展的重要關鍵。現今模造玻璃鏡片多以非球面來修正主要像差以達成降低系統片數目標,然而在鏡片生產過程中,因鏡片溫度快速變化導致收縮不均,進而產生鏡片殘留應力,造成鏡片折射率變異之光學品質問題。
本論文探討製程殘留應力造成之主要像差及分析其製程改善之對策,首先以光學分析軟體建立鏡片內部折射率分佈,並進行光學性能模擬,再以夏克哈特曼波前感測器來量測鏡片,經重建波前與採用澤尼克多項式分析像差;用實驗量測與光學模擬結果對比分析得知,玻璃預形體經熱壓成型後,再經過退火程序即可大幅改善折射率變異之品質問題,但改變製程過於昂貴,故以嘗試不同之製程參數,探討如何提升折射率均質,期能掌握精密模造玻璃鏡片之性能,以提高良率並優化鏡片光學性能及製程參數。
Conventional materials used for optical lenses are classified into two groups, namely inorganic glass and optics polymers. Since optics polymers have the advantage of lower costs and mass-production, they are very popular in the market of small-size optical lenses. As the demands for high quality increase, optical lenses made of inorganic glass are in greater needs today. Hence, precision glass molding technology has become the key technology to produce high quality optical lenses in recent years. Nowadays, the applications of aspherical surfaces in molding lenses to compensate aberrations and reduce the number of lenses are growing in the market. However, production problems such as inhomogeneous shrinkage due to rapid temperature changes and residual stresses with variations in refractive index inside the lens are challenging during the manufacture of glass lenses.
This thesis investigates primary aberrations induced by the residual stresses and possible remedies for process inefficiency. First, optics simulation packages are adopted for establishment in distribution of refractive index inside target lenses with numerical analysis for the lens performances. Then, Shack Hartmann wavefront sensors are employed for lens performance measurement system with assessment in the aberrations expressed by Zernike polynomials. Through comparison of the experimental measurements to the optics simulation results analysis of simulation results, post-annealing process can significantly circumvent the problem of refractive index variations in precision molding lenses. The results could be used in optical design of precision glass molded lenses to compensate possible defects and optimize optical performance before the lenses are molded.
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
1-3 文獻回顧 3
1-3-1 鏡片之光學設計參數 3
1-3-2 玻璃鏡片加工方式 3
1-3-3 模造玻璃元件光學特性 4
1-3-4 夏克-哈特曼波前感測器的歷史 5
1-3-5 波前感測器用於穿透式光學量測 6
第二章 基礎理論 14
2-1 基礎光學理論 14
2-1-1 費馬定理 14
2-1-2 斯乃耳定律 14
2-1-3 透鏡之近軸成像理論 15
2-1-4 像差理論 15
2-2 玻璃鏡片設計參數 17
2-2-1 光學倍率 17
2-2-2 非球面透鏡 18
2-3 波前量測分析理論 19
2-3-1 波前定義 19
2-3-2 澤尼克多項式 20
2-3-3 波前量測 21
2-3-4 波前重建方法 21
2-4 模造玻璃透鏡 23
2-4-1 製程性質 23
2-4-2 光學影響 24
第三章 量測系統設計與模擬 37
3-1 量測系統模擬之分析 錯誤! 尚未定義書籤。
3-2 模擬系統元件模型建立 38
3-2-1 非球面鏡片 38
3-2-2 波前感測器 38
3-3 量測系統設計 39
3-3-1 無窮遠量測架構 39
3-3-2 有限焦長量測架構 40
3-3-3 不同架構量測差異性 40
3-4 模造鏡片量測模擬 41
3-4-1 系統參數 41
3-4-2 改變光圈大小模擬 42
3-4-3 模擬折射率分佈 42
3-5 光線追跡差異分析 43
3-5-1 透鏡模型分析 44
3-5-2 自訂折射率 44
第四章 實驗量測與討論 58
4-1 量測載具設計製作 58
4-2 量測實驗架構 58
4-3 實驗系統校準 60
4-3-1 雷射光源與透鏡 60
4-3-2 建立準直光束與校準 60
4-3-3 待測鏡片校準 61
4-4 玻璃鏡片量測 61
4-5 玻璃鏡片退火 62
4-6 實驗結果與探討 62
4-6-1 模造玻璃鏡片量測 62
4-6-2 研磨玻璃鏡片量測 63
第五章 結論與未來工作 75
5-1 結論 75
5-2 未來工作 76
參考文獻 78
[1] E. Hecht, Optics, Addison Wesley, 2001, pp. 150-158,255-266.
[2] D. Meister, "Ophthalmic Lens Design," [Online]. Available: http://www.opticampus.com/cecourse.php?url=lens_design/&OPTICAMP=f1e4252df70c63961503c46d0c8d8b60#asphericity.
[3] "Fuzhou Looklens Optics Co.,Ltd," 15 June 2012. [Online]. Available: http://www.looklens.com/camera-lens-tips/what-do-aspheric-or-aspherical-mean-3.html.
[4] 2008年新興光電技術發展與應用瞭望, 光電科技工業協進會, 2008, pp. 7-1~7-8.
[5] Richard O. Maschmeyer, Chester A. Andrysick, Thomas W. Geyer, Helmuth E. Meissner,Charles J. Parker, and L. Michael Sanford, "Precision molded-glass optics," APPLIED OPTICS, pp. 2410-2412, 15 August 1983.
[6] J. Deegan, Precision Glass Molding Technical Brief, Rochester Precision Optics, 2007, pp. 1-17.
[7] Lijuan Su, Yang Chen, Allen Y. Yi, Fritz Klocke, and Guido Pongs, “Refractive index variation in compression molding of precision glass optical components,” APPLIED OPTICS, pp. 1662-1667, 1 April 2008.
[8] F. Forouzandeh, Development of Hartmann Screen Test for Measurement of Stress during Thin Film Deposition, 2008, pp. 20-21.
[9] Ben C. Platt, PhD; Roland Shack, PhD, “History and Principles of Shack-Hartmann Wavefront Sensing,” Refractive Surgery, p. 573, September 2001.
[10] D. Malacara, Optical Shop Testing, A John Wiley & Sons, 2007, pp. 361-397.
[11] DrBob, "Positieve lens," 21 January 2006. [Online]. Available: https://commons.wikimedia.org/wiki/Lenses#/media/File:Positieve_lens.png.
[12] Y.-H. Lin, Design on experimental apparatus of optical glass lens molding and study on molding characteristics, 2008, p. 19.
[13] Michael Schaub, Jim Schwiegerling, Eric Fest, R. Hamilton Shepard, Alan Symmons, Molded Optics: Design and Manufacture, CRC Press, 2011, pp. 165-200.
[14] Didia Patricia Salas-Peimbert, Daniel Malacara-Doblado, Victor Manuel Durán-Ramírez, Gerardo Trujillo-Schiaffino, and Daniel Malacara-Hernández, “Wave-front retrieval from Hartmann test data,” APPLIED OPTICS , p. 4230, 10 July 2005.
[15] A. Tokovinin, "Adaptive optics tutorial at CTIO," 22 Nov 2005. [Online]. Available: http://www.ctio.noao.edu/~atokovin/tutorial/part3/wfs.html.
[16] R. R. Rammage, D. R. Neal, and R. J. Copland, “Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology,” SPIE, pp. 161-172, 7 July 2002.
[17] Tae Moon Jeong, Manoj Menon, and Geunyoung Yoon, "Measurement of wave-front aberration in soft contact lenses by use of a Shack–Hartmann wave-front sensor," APPLIED OPTICS, pp. 4253-4257, 20 July 2005.
[18] J. E. Greivenkamp, Field Guide to Geometrical Optics, SPIE Publications, 2004, p. 7.
[19] G.-m. Dai, Wavefront Optics for Vision Correction, SPIE Press, 2008, pp. 97-128.
[20] Bo Tao, Peng He, Lianguan Shen, Allen Yi, “Annealing of Compression Molded Aspherical Glass Lenses,” Manufacturing Science and Engineering, pp. 011008-1~01008-8, FEBRUARY 2014.
[21] SCHOTT, “TIE-40 Optical glass for precision molding,” SCHOTT, Duryea, 2006.
[22] Wei Zhao,Yang Chen,Lianguan Shen,and Allen Y. Yi, "Refractive index and dispersion variation in precision optical glass molding by computed tomography," APPLIED OPTICS, pp. 3588-3595, 1 July 2009.
[23] W. A. Douthwaite, Contact Lens Optics and Lens Design, Elsevier Health Sciences, 2006, pp. 33,117.
[24] Mglg, "Spherical aberration," 30 August 2006. [Online]. Available: https://en.wikipedia.org/wiki/Spherical_aberration#/media/File:Spherical_aberration_2.svg.
[25] Waldir, "An illustration of various conic constants," 25 August 2009. [Online]. Available: https://en.wikipedia.org/wiki/Conic_constant#/media/File:Conic_constant.svg.
[26] G. C. Finn, "WAVE FRONT, WAVE NORMAL," 2015. [Online]. Available: http://www.brocku.ca/earthsciences/people/gfinn/optical/wavefron.htm.
[27] John Cerne, Frank Nappo, "Waves-Matter Interactions: Spherical waves, plane waves and Huygens's Principle," [Online]. Available: http://claw.physics.buffalo.edu/Page18/ProjectCLAW-P18.html.
[28] Cari Pérez-Vives, Lurdes Belda Salmerón, Santiago García-Lázaro, David Madrid Costa, Teresa Ferrer-Blasco, “Adaptive optics, wavefront aberrations and visual simulation,” J Emmetropia, pp. 103-109, 2011.
[29] O. S. M. L. V. P. G. Vdovin, OKO GUIDE TO ADAPTIVE OPTICS, Netherlands: OKO Technologies, 2013, p. 64.
[30] Bo Tao, Lianguan Shen, Allen Yi, Mujun Li, Jian Zhou, “Reducing Refractive Index Variations in Compression Molded Lenses by Annealing,” Optics and Photonics, pp. 118-121, March 2013.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *