帳號:guest(3.12.161.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卜書偉
作者(外文):Pu, Shu-Wei
論文名稱(中文):人類手指剛性量測系統之開發與掌型輔具機電整合設計之研究
論文名稱(外文):Research and Development of Human Finger Stiffness Measurement System through Mechatronic Integration of Hand Wearable Robotic Device
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan(James)
口試委員(中文):裴育晟
蘇瑞堯
口試委員(外文):Pei, Yu-Cheng
Su, Jui-Yiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033599
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:83
中文關鍵詞:外骨骼機器人掌部復健輔具
外文關鍵詞:ExoskeletonHand rehabilitation device
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:44
  • 收藏收藏:0
機器人產業之發展層面從原本的工業與軍事上,漸漸推廣至醫學和復健工程之中,復健型態的輔助機械人為現今研究之主流,其中包含下肢與上肢穿戴式機械輔具。於國內外相關研究文獻指出,復健療程的密集度、重複性、復健量之多寡與治療效果有相當密切的關係,且與身體機能受到損傷後的黃金復健恢復期也有相當密切的關聯,若能在這段時期,提供病患密集且有效的治療,對病人肢體功能的恢復情況將會有相當大的幫助。現今復健療程上需藉由醫師與物理復建師的臨床經驗來決定病人所需之治療與方式,這樣的診斷方式未能提供即時量化依據,且治療策略將因醫療人員之個人評斷所主導這可能會降低了病人復健的效率,更可能無形之中耗費額外之醫療成本,因此能對病人手部受傷之程度進行量化的數據量測與判定為本研究欲探討的目標。
本研究為設計與實作手掌型穿戴式輔具,為手部關節活動受限或中樞週邊神經損傷病患所開發的手部穿戴式輔具,透過外部機械手結構來協助病患進行重複動作的復健療程,只需藉由醫師與物理復建師的控制,透過機器與病人進行復健。本研究除了對手掌型穿戴輔具進行開發之外,亦提出於輔具中加入剛性量測系統的概念,來量測外骨骼結構工作時的剛性,透過這些量測所得到之數值,來判斷系統的等效剛性大小。應用上可透過系統測量到之數值,來定義病人的肢體剛性,,將量化之數據給醫師參考,醫師便可針對病人個案進行適合的復健療程。
The development of robotics has gradually advanced from industrial and military use to medical nursing and rehabilitation use. Physical rehabilitation robotics has become the main stream in the medical application, including upper and lower limb rehabilitation robotic devices. Investigated researches in the global have shown that the intensity, repeatability, and the amount of rehabilitation in the process are directly related to the results of the rehabilitation process. Also, the preferable time for rehabilitation process for each patient is crucial the rehabilitation results. The patents will have beneficial recovery results if patents are able to undergo proper rehabilitation process on the preferable time set by the doctors. The method of rehabilitation process is decided by the clinical experience of the doctors and therapists; thus, different rehabilitation methods chosen by the doctors and therapist might lower the result of the rehabilitation process and raise the unnecessary medical cost.
The purpose of this study is to design and develop a wearable robotic device for human hand, which focuses on patents who lost their range of motion limitation in their hand movement and suffered from nervous system diseases. The aim of this rehabilitation device is to assist patents in performing repeating hand movement rehabilitation. Also, doctors and therapist can control the setting rehabilitation device to fulfill the needs of the patents. Not only did this study focus on the design and development of a wearable robotic device for human hand but also develop the stiffness measurement system for robotic device. The measured data can be used to determine the level of healthiness of patents' hand in order for the doctors and therapist to decide the appropriate rehabilitation therapy for each individual. Through the development of the rehabilitation device and stiffness measurement system, doctors and therapists can be provided with real time result data to assist them in rehabilitation diagnosis and treatment.
第一章 緒論
1.1 前言
1.2 歷史背景與發展
1.3 文獻回顧
1.4 手掌型穿戴式輔具分類
1.4-1 以輔具的「功能」分類
1.4-2 以輔具的「動力來源」分類
1.4-3 以輔具使用之「感測方式」分類
1.4-4 以輔具使用之「機構外型」分類
1.5 研究動機與目標
1.6 研究方法
第二章 輔具機構模型建構與模擬
2.1 前言
2.2 設計概念描述與CAD模型的建構
2.3 座標轉換理論
2.4 外骨骼手指的數學模型建構
2.4-1 符號定義與初始條件
2.4-2 模型假設與座標相對關係建立
2.5 外骨骼手指的軌跡模擬結果
2.6 外骨骼手指軌跡實驗結果
2.7 結語
第三章 輔具控制系統架設
3.1 前言
3.2 系統架構
3.3 電路設計
3.4 輔具系統架設之實驗結果
3.5 結語
第四章 輔具剛性量測系統理論與架設
4.1 前言
4.2 量測原理
4.3 系統架設
4.4 系統參數定義與實驗流程
第五章 輔具剛性量測實驗結果
5.1 前言
5.2 系統校正曲線
5.3 輔具的剛性測量實驗結果
5.4 無負載狀態之手指剛性量測結果
5.5 裝載彈性係數K1的手指剛性量測結果
5.6 裝載彈性係數K2的手指剛性量測結果
5.7 綜合剛性量測結果討論
5.8 結語
第六章 結論與未來展望
6.1 總結
6.2 本文貢獻
6.3 未來展望
參考文獻
[1] H. Kazerooni, "The Berkeley Lower Extremity Exoskeleton," in Field and Service Robotics: Results of the 5th International Conference, STAR 25, Berlin Heidlberg, 2006.
[2] H. Kazerooni, "Exoskeleton for Human Power Augmentation," in IEEE/RSJ International Conference on Intelligent Robot and Systems, Alberta Canada, 2005.
[3] H. Kazerooni and R. Steger, “The Berkeley Lower Extremity Exoskeleton,” Trans. ASME, J. Dyn. Syst., Meas., Control, Vol. 128, pp. 14-25, 2006.
[4] H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, “Power Assist Methods for HAL-3 Using EMG-based Feedback Controller,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. vol. 22003, pp. 1648-1653.
[5] H. Kawwmoto and Y. Sankai, “Powe Assist System HAL-3 for Gait Disorder Person,” in Proc. Int. Conf. Comput. Helping People Special Needs(ICCHP), vol. 2398, pp. 19-29, 2002.
[6] C. Inc, "Robot Suit HAL," 2012, [Online]. Available: http://www.cyberdyne.jp/english/robotsuithal/index.html.
[7] C. Inc, "CYBERDYNE LETS HAL CYBORGS TAKE A STROLL THROUGH TOKYO," [Online]. Available: http://singularityhub.com/2009/08/11/cyberdyne-lets-hal-cyborgs-take-a-stroll-through-tokyo/.
[8] T. Bock, T. Linner and W. Ikeda (2012). Exoskeleton and Humanoid Robotic Technology in Construction and Built Environment, The Future of Humanoid Robots - Research and Applications, Dr. Riadh Zaier (Ed.), ISBN: 978-953-307-951-6, InTech, DOI: 10.5772/2769, T. Bock, T. Linner and W. Ikeda (2012). Exoskeleton and Humanoid Robotic Technology in Construction and Built Environment, The Future of Humanoid Robots - Research and Applications, Dr. Riadh Zaier (Ed.), ISBN: 978-953-307-951-6, InTech, DOI: 10.5772/2769.
[9] Festo, "ExoHand – human-machine interaction," 2012. [Online]. Available: http://www.festo.com/cms/en_corp/12713.htm.
[10] C. f. D. Awareness, "Disability statistics," 2013, [Online]. Available: http://www.disabilitycanhappen.org/chances_disability/disability_stats.asp.
[11] Heller, A., Wade, D. T., Wood, V. A., Sunderland, A., Hewer R. L. and Ward, E., “Arm function after stroke: measurement and recovery over the first three months,” Journal of Neurology, Neurosurgery, and Psychiatry, Vol. 50, No. 6,, pp. 714-719, 1987.
[12] Sunderland, A., Tinson, D., Bradley, L. and Hewer, R. L., “Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator,” Journal of Neurology, Neurosurgery, and Psychiatry, Vol. 52, No. 11, pp. 1267-1272, 1989.
[13] Nakayama, H., Jorgensen, H., Raaschou, H. and Olsen, T., “Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study,” Archives of Physical Medicine and Rehabilitation, Vol. 75, No. 4, pp. 394-398, 1994.
[14] Wade, D. T., Langton-Hewer, R., Wood, V. A., Skilbeck, C. E. and Ismail, H. M., “The hemiplegic arm after stroke: measurement and recovery,” Journal of Neurology, Neurosurgery, and Psychiatry, Vol. 46, No. 6, pp. 521-524, 1983.
[15] Patton, J. L. and Mussa-Ivaldi, F. A., “Robot-assisted adaptive training: custom force fields for teaching movement patterns,” IEEE Transactions on Biomedical Engineering, Vol. 51, No. 4, pp. 636-646, 2004.
[16] Taub, E., Miller, N., Novack, T., Cook, E., Fleming, W., Nepomuceno, C., Connell, J. and Crago, J., “Technique to improve chronic motor deficit after stroke,” Archives of Physical Medicine and Rehabilitation, Vol. 74, No. 4, pp. 347-354, 1993.
[17] Mark, V. W. and Taub, E.,, “Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities,” Restorative Neurology and Neuroscience, Vol. 22, No. 3-5, pp. 317-336, 2004.
[18] Pilwon Heo, Gwang Min Gu, Soo-jin Lee, Kyehan Rhee and Jung Kim, “Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering,” INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 5, pp. 807-824, 2012.
[19] Chiri, A., Giovacchini, F., Vitiello, N., Cattin, E., Roccella, S.,Vecchi, F. and Carrozza, M. C., “HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1106-1111, 2009.
[20] Chiri, A., Vitiello, N., Giovacchini, F., Roccella, S., Vecchi, F.and Carrozza, M. C., “Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-stroke Rehabilitation,” IEEE/ASME Transactions on Mechatronics, Vol. PP, No. 99, pp. 1-11, 2011.
[21] Shields, B. L., Main, J. A., Peterson, S. W. and Strauss, A. M., “An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities,” Proc. of the IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 27, No. 5, pp. 668-673, 1997.
[22] Ju Wang, Jiting Li, Yuru Zhang, Shuang Wang, "Design of an Exoskeleton for Index Finger Rehabilitation," in 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, 2009.
[23] Wege, A. and Hommel, G., "Development and control of a hand exoskeleton for rehabilitation of hand injuries," in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.
[24] Wege, A. and Zimmermann, A., "Electromyography sensor based control for a hand exoskeleton," in Proc. of the IEEE International Conference on Robotics and Biomimetics, 2007.
[25] Jamshed Iqbal, Nikos G. Tsagarakis and Darwin G. Caldwell, "A Multi-DOF Robotic Exoskeleton Interface for Hand Motion Assistance," in 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, 2011.
[26] In, H. K., Cho, K.-J., Kim, K. R. and Lee, B. S., "Jointless structure and under-actuation mechanism for compact hand exoskeleton," in Proc. of the IEEE International Conference on Rehabilitation Robotics, 2011.
[27] Tadano, K., Akai, M., Kadota, K. and Kawashima, K., "Development of grip amplified glove using bi-articular mechanism with pneumatic artificial rubber muscle," in Proc. of the IEEE International Conference on Robotics andAutomation, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *