帳號:guest(18.191.239.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫翊強
作者(外文):Sun, Yi-Chiang
論文名稱(中文):微型晶片級Pirani真空計之設計與實現
論文名稱(外文):Design and Implementation of Miniaturized Chip Level Pirani Vacuum Gauge
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
口試委員(中文):李昇憲
蘇旺申
口試委員(外文):Li, Sheng Shian
Su, Wang-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033594
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:112
中文關鍵詞:CMOS-MEMSPirani真空計熱阻封裝
外文關鍵詞:PiraniVacuum gaugeThermal resistancePackage
相關次數:
  • 推薦推薦:0
  • 點閱點閱:752
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究以TSMC 0.18um 1P6M CMOS標準製程來設計並實現Pirani真空計。一般而言,Pirani真空計由發熱源與散熱片所組成,利用空氣熱傳導係數隨壓力而變的特性,發熱源所產生的熱透過空氣傳遞至散熱片的熱量將會不同,因此可利用此特性來量測壓力變化。本研究提出新型態的結構設計,使元件的熱阻(Thermal resistance)可以上升,透過熱阻的上升使元件在相同功率下可以有較高的升溫,因而增加熱源與散熱片間的熱傳效率,以提升元件的性能。本研究共提出兩種新型結構設計,以達到在相同面積大小的情況下增加元件使用性能的目標。第一種結構設計為互補式內置散熱片結構設計,此設計具有以下特點:(1)熱源上挖洞的設計可以增加元件的熱阻。(2)內置散熱片結構設計彌補因挖洞而損失的有效面積。(3)以金屬作為加熱源使感測材料與散熱源間沒有太多二氧化矽阻隔,大幅提升元件靈敏度。(4)可輕易與其他CMOS-MEMS元件作封裝整合,以檢測封裝內部真空度。第二種結構設計為互補式凸型散熱片與凹槽熱源結構設計,此設計具有以下特點:(1)凸型散熱片垂直整合於凹槽熱源中可增加有效散熱面積。(2)凹槽熱源設計可以增加元件的熱阻。(3)可輕易與其他CMOS-MEMS元件作封裝整合,以檢測封裝內部真空度。
This study employs standard TSMC 0.18um 1P6M CMOS process to design and implement Pirani vacuum gauge. Generally, Pirani vacuum gauge consists of heater and heat sink units. The heat generated by heater is transferred to the heat sink through gas molecules whose thermal conductivity depends on their pressure. This study proposes a novel structure design to improve the performance of Pirani vacuum gauge which is increasing the thermal resistance of heater. By increasing thermal resistance, the heater can obtain higher temperature comparing to typical one under the same power heating. Therefore, the efficiency of heat transfer can be increased and further improve the performance of the gauge. This study presents two different structures to achieve the goal of improving the device performance without changing device footprint size. Firstly, this study presents a complementary inbuilt heat sink design. This design has the following advantages: (1) The hole in heater can increase thermal resistance of heater, (2) The inbuilt heat sinks compensate the lost active area, (3) The heating and sensing material is composed of metal, so there are no much SiO2 to influence the heat transfer, and (4) Easy integration with packaged CMOS-MEMS devices for pressure monitoring. Then, this study presents another complementary bump heat sink and cavity heater design. This design has the following advantages: (1) The bump heat sink vertical integrates with cavity heater increases the active area, (2) The cavity in heater increases thermal resistance of heater, and (3) Easy integration with packaged CMOS-MEMS devices for pressure monitoring.
中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 文獻回顧 4
1-3-1 封裝檢測方式 4
1-3-2 Pirani真空計 6
1-3-3 CMOS-MEMS製程 10
1-4 研究目標與架構 12
第二章 理論分析 26
2-1 不同壓力下之熱傳探討 26
2-2 Pirani真空計理論分析 28
2-1-1 操作原理及其物理意義 28
2-2-2 理論公式 30
2-2-3 多層膜公式修正 32
2-3 模擬與分析 32
第三章 互補式內置散熱片結構設計 40
3-1 結構設計與分析 40
3-2 元件製程與結果 43
3-2-1 TSMC 0.18μm 1P6M CMOS製程 43
3-2-2 CMOS-MEMS元件定義與後製程 44
3-2-3 製程結果與討論 46
3-3 量測結果與討論 47
3-3-1 材料特性量測 47
3-3-2 元件特性量測 48
3-4 小結 54
第四章 互補式凸型散熱片與凹槽熱源結構設計 70
4-1 結構設計與分析 70
4-2 元件後製程與結果 73
4-3 量測結果與討論 74
4-3-1 材料特性量測 75
4-3-2 元件特性量測 76
4-4 小結 79
第五章 結論與未來工作 95
5-1 研究成果 95
5-2 未來工作 97
參考文獻 106
[1] http://www.nintendo.tw/
[2] http://www.yole.fr/
[3] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, vol.86, pp.1536-1551, 1998.
[4] J. Chae, H. Kulah, and K. Najafi, “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer,” J. Micromech. Microeng., vol.15, pp.336-345, 2005.
[5] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol.86, pp.1552-1574, 1998.
[6] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromech. Syst., vol.11, pp.188-195, 2002.
[7] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-D LSIs,” Proceedings of the IEEE, vol.97, pp.49-59, 2009.
[8] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang , R. J. Polastre, R. R. Horton, and J. U. Knickerbocker, “3D chip-stacking technology with through-silicon vias and low-volue lead-free interconnections,” IBM Journal of Research, vol.52, pp.611-622, 2008.
[9] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L. Schaper, “Process integration for through-silicon vias,” Journal of Vacuum Science & Technology A, vol.23, pp.824-829, 2005.
[10] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Haleitner, “CMOS MEMS - present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., 2002, pp.459-466.
[11] G. K. Fedder, R. T. Howe, T.-J. King Liu, and E. P. Que´vy, “Technologies for cofabricating MEMS and electronics”, Proceedings of the IEEE, vol.96, pp.306-322, 2008.
[12] http://www.invensense.com/
[13] http://www.mcubemems.com/
[14] Department of Defense Test Method Standard Microcircuits, pp. 1–13, MIL-STD-883F, Jun. 18, 2004.
[15] 林炯文, “具埋藏穿透矽晶片導線的微機電元件之開發及其於三維封裝與整合之應用,” 清華大學博士論文, 2010.
[16] Y.-T. Cheng, W.-T. Hsu, K. Najafi, C. T.-C. Nguyen, and L. Lin, “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” J. Microelectromech. Syst., vol.11, pp.556-565, 2002.
[17] D. Sparks, G. Queen, R. Weston, G. Woodward, M. Putty, L. Jordan, S. Zarabadi, and K. Jayakar, “Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder,” J. Micromech. Microeng., vol.11, pp.630-634, 2001.
[18] W. Zhang, and K. L. Turner, “Pressure-dependent damping characteristics of micro silicon beam resonators for different resonant modes,” in Proceedings IEEE Sensors, Irvine, CA, Oct., 2005, pp.357-360.
[19] R. N. Candler, W.-T. Park, M. Hopcroft, B. Kim, and T. W. Kenny, “Hydrogen diffusion and pressure control of encapsulated MEMS resonators,” in Proceedings of International Solid State Sensors and Actuators Conference, Seoul, Korea (South), June, 2005, pp.920-923.
[20] W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” in Proceedings SPIE, San Diego, CA, Mar., 1997, pp. 530-539.
[21] A. V. Chavan, and K. D. Wise, “A monolithic fully-integrated vacuum-sealed CMOS pressure sensor,” IEEE Trans. on Electron Devices, vol.49, pp.164-169, 2002.
[22] C.-M. Sun, C. Wang; M.-H. Tsai, H.-S. Hsie, and W. Fang, “A novel double-side CMOS-MEMS post processing for monolithic sensor integration,” IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, Jan., 2008, pp.90-93.
[23] M. Eickhoff, “A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates,” Sensors and Actuators A: Physical, vol.74, pp.56-59, 1999.
[24] J. Chiou, “Simulations for thermal warpage and pressure nonlinearity of monolithic CMOS pressure sensors,” IEEE Transactions on Advanced Packaging, vol.26, pp.327-333, 2003.
[25] J. A. Chiou and S. Chen, “Pressure nonlinearity of micromachined piezoresistive pressure sensors with thin diaphragms under high residual stresses,” Sensors and Actuators A: Physical, vol.147, pp.332-339, 2008.
[26] J. Shie, B. C. S. Chou and Y. Chen, “High performance Pirani vacuum gauge,” Journal of Vacuum Science & Technology A, vol.13, pp.2972-2979, 1995.
[27] B. C. S. Chou and J.-S. Shie, “An innovative pirani pressure sensor,” in Proceedings of International Solid State Sensors and Actuators Conference, Chicago, Illinois, June, 1997, pp.1465-1468.
[28] A. Haberli, O. Paul, P. Malcovati, M. Faccio, E Maloberti, and H. Baltes, “CMOS integration of a thermal pressure sensor system,” IEEE ISCAS, Atlanta, GA, May, 1996, pp.377-380.
[29] B. C. S. Chou, Y. Chen, M. O.-Yang and J. Shie, “A sensitive Pirani vacuum sensor and the electrothermal SPICE modelling,” Sensors and Actuators A: Physical, vol.53, pp.273-277, 1996.
[30] N. R. Swart and A. Nathan, “Integrated CMOS polysilicon coil-based micro-pirani gauge with high heat transfer efficiency,” IEEE Electron Devices Meeting, San Francisco, CA, Dec., 1994, pp.135-138.
[31] A. M. Robinson, P. Haswell, R. P. W. Lawson and M. Parameswaran, “A
thermal conductivity microstructural pressure sensor fabricated in standard complementary metal-oxide semiconductor,” Rev. Sci. Instrum., vol.63, pp. 2026-2029, 1992.
[32] O. Paul, A. Haberli, P. Malcovati and H. Baltes, “Novel integrated thermal pressure gauge and read-out circuit by CMOS IC technology,” IEEE Electron Devices Meeting, San Francisco, CA, Dec., 1994, pp.131-134.
[33] B. H. Stark, Y. Mei, C. Zhang and K. Najafi, “A doubly anchored surface micromachined pirani gauge for vacuum package characterization,” in IEEE International Conference on Micro Electro Mechanical System, Kyoto, Japan, Jan., 2003, pp.506-509.
[34] J. Chae, B. H. Stark, and K. Najafi, “A micromachined Pirani gauge with dual heat sinks,” IEEE Trans. Adv. Package, vol.28, pp.619-625, 2005.
[35] Q. Li, J.F.L. Goosen, J.T.M. van Beek, F. van Keulen, “A SOI Pirani sensor with triple heat sinks,” Sensors and Actuators A: Physical, vol.162, pp.267-271, 2010.
[36] K.-C. Liang, C.-W. Cheng, C.-H. Lin, and W. Fang, “A novel low pressure sensor with fin-structures,” in Proc. IEEE Sensors, Taipei, Oct., 2012.
[37] J. Mitchell, G. R. Lahiji, and K. Najafi, “An improved performance poly-Si Pirani vacuum gauge using heat-distributing structural supports,” J. Microelectromech. Syst., vol.17, pp.93-102, 2008.
[38] E. S. Topalli, K. Topalli, S. E. Alper, T. Serin, and T. Akin, “Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging,” IEEE Sensors Journal, vol.9, pp.263-270, 2009.
[39] F. Santagata, J. F. Creemer, E. Iervolino, L. Mele, A. W. van Herwaarden, and P. M. Sarro, “A tube-shaped buried Pirani gauge for low detection limit with small footprint,” J. Microelectromech. Syst., vol.20, pp.676-684, 2011.
[40] F. Santagata, J. F. Creemer, E. Iervolino and P. M. Sarro, “Tube-shaped Pirani gauge for in situ hermeticity monitoring of SiN thin-film encapsulation,” J. Micromech. Microeng. vol.22, 105025, 2012.
[41] M. Kubota, Y. Mita, T. Momose, A. Kondo, Y. Shimogaki, Y. Nakano, and M. Sugiyama, “A 50 nm-wide 5 μm-deep copper vertical gap formation method by a gap-narrowing post-process with Supercritical Fluid Deposition for Pirani gauge operating over atmospheric pressure,” in IEEE International Conference on Micro Electro Mechanical System, Paris, Jan., 2012, pp.204-207.
[42] K. Khosraviani and A. M. Leung, “The nanogap Pirani—A pressure sensor with superior linearity in an atmospheric pressure range,” J. Micromech. Microeng., vol.19, 045007, 2009.
[43] M. Kubota, Y. Mita and M. Sugiyama, “Silicon sub-micron-gap deep trench Pirani vacuum gauge for operation at atmospheric pressure,” J. Micromech. Microeng. vol.21, 045034, 2011.
[44] M. Kubota, T. Okada, Y. Mita, M. Sugiyama, and Y. Nakano, “A bulk micromachined vertical nano-gap Pirani wide-range pressure test structure for packaged MEMS performance monitoring,” IEEE International Conference on Microelectronic Test Structures, Hiroshima, 2010, pp.14-17.
[45] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems. vol.2, Weinheim, Germany, John Wiley & Sons Inc, 2005.
[46] http://www.analog.com
[47] http://www.akustica.com
[48] G. K. Fedder, “CMOS-based sensors,” in Proc. IEEE Sensors, Irvine, CA, Oct., 2005, pp. 125-128.
[49] C. H. Mastrangelo, “Thermal applications of microbridges,” Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci., Univ. California, Berkeley, 1991.
[50] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J Solid State Circuits, vol.26, pp.1998-2007, 1991.
[51] 蔡明翰, “利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發,” 清華大學博士論文, 2011.
[52] J. S. Mitchell, “Low temperature wafer level vacuum packaging using Au-Si eutectic bonding and localized heating,” Ph.D. dissertation, Dept. Mech. Eng., Univ. Michigan, Ann Arbor, 2008.
[53] W. C. Welch III, “Vacuum and hermetic packaging of MEMS Using solder,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Michigan, Ann Arbor, 2008.
[54] J. Wang, Z. Tang, and J. Li, “Tungsten-microhotplate-array-based Pirani vacuum sensor system with on-chip digital front-end processor,” J. Microelectromech. Syst., vol.20, pp.834-841, 2011.
[55] M.-H. Li, C.-S. Li, C.-H. Chin, C.-Y. Chen, and S.-S. Li, “An ultra-low power ovenized CMOS-MEMS resonator monolithically integrated with interface circuits,” in IEEE International Conference on Micro Electro Mechanical System, Paris, Jan., 2012, pp.753-756.
[56] W.-C. Chen, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicron gaps and quasi-linear frequency tuning,” J. Microelectromech. Syst., vol.21, pp.688-701, 2012.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *