帳號:guest(18.188.107.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宗慶
作者(外文):Chen, Chung Chin
論文名稱(中文):液靜壓旋轉平台設計
論文名稱(外文):A Hydrostatic Rotary Bearing Design
指導教授(中文):宋震國
口試委員(中文):黃華志
蕭德瑛
林士傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033587
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:133
中文關鍵詞:液靜壓軸承
外文關鍵詞:HydrostaticBearing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:402
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文設計並製作一套高負載、低轉速且高迴轉精度之液靜壓旋轉平台,藉由分析及評估實際加工情形,選擇性能表現可能為最佳之液靜壓軸承構型,並將其製作以實驗研究之;本文探討使用毛細管節流器之液靜壓旋轉平台的性能表現。
在理論方面,首先分析液靜壓節流器中封油面流阻值之計算,以用來設計軸承油腔內部壓力與供給壓力之壓力比,使油膜剛性能達到最大;接著探討在液靜壓軸承系統中,使用毛細管節流器之液靜壓單向墊以及雙向墊軸承的承載力分析,並求出其油膜剛性表現;另外,在液靜壓軸承的設計過程中,功率消耗與流體的溫度變化息息相關,一般在設計時,需慎重考量油膜厚度、封油面尺寸、流體黏滯係數、總流體流量等參數之設計,以使液靜壓軸承的承載力對功率比值增大來提高效能並減少溫升。
而供油設備、冷卻系統與驅動方法等相關之系統設計,須依照所設計之軸承的功率需求、對動態表現之影響等條件來選用及設計,本文亦初步規劃上述系統之設計,並將其製作出以測試其對液靜壓軸承系統的影響。另外,規劃測試現有液靜壓旋轉平台的方法及步驟,並以實驗驗證之。更進一步模擬探討液靜壓旋轉平台油腔內部流體性能表現,以分析誤差來源並進行最佳化修改。
This thesis studies the design process of the hydrostatic bearing, and completes a hydrostatic rotary bearing design with high performance based on a properly structural design and with self-made capillary restrictors.
This work commences with the analysis of the flow resistance between the rotor and the stator of a hydrostatic bearing in order to delve into the pressure ratio between the source and the pocket, which influences the bearing stiffness tremendously. Secondly, this study carries out the load capacity analysis of the single pad and the opposed pad hydrostatic bearings, and also the stiffness under the usage of capillary restrictors. After the structural consideration, this work optimizes the performances with the estimation and the redesign of the bearing total flow rate, the oil film thickness, the temperature variation and the pocket pressure distribution.
To perfect this hydrostatic rotary bearing system, the related equipment is taken into consideration, such as the oil pumping system and the bearing drive system. This work follows the requirements of the bearing performances to construct the systems mentioned above. This study consummates with a high load capacity, high precision and high stiffness hydrostatic rotary bearing designed based on the hydrostatic theories, made by the proper processes and assembled with the three fine systems mentioned above.
摘要 2
Abstract 3
目錄 4
圖目錄 7
第一章 導論 13
1-1 研究動機 13
1-2 研究背景 14
1-3 文獻回顧 16
1-3-1 液靜壓軸承之研究 16
1-3-2 固定式節流液靜壓軸承之研究 17
1-3-3 主動式節流液靜壓軸承之研究 18
1-3-4 表面自補償節流器之研究 20
1-3-5 液靜壓軸承理論誤差修正之研究 20
1-4 本文內容 21
第二章 理論分析 23
2-1 流阻理論分析 23
2-2 雷諾方程式 28
2-3 Lumped Parameter Modeling 31
2-4 液靜壓軸承承載力及油膜剛性 34
2-5 液靜壓軸承流體溫度變化 43
第三章 液靜壓旋轉平台設計 48
3-1 液靜壓旋轉平台設計流程 48
3-2 液靜壓旋轉平台構型選擇 49
3-3 液靜壓旋轉平台尺寸設計 51
3-4 液靜壓旋轉平台封油面設計 55
3-5 評估、計算所設計之軸承的剛性、流量、功耗及溫度變化 58
3-6 節流器的選用及設計 63
第四章 平台性能評估及模擬 66
4-1 液靜壓旋轉平台結構形變模擬 66
4-2 液靜壓旋轉平台系統剛性模擬 70
4-3 液靜壓旋轉平台流量分析 72
4-4 液靜壓旋轉平台功耗與溫度變化分析 74
4-5 油腔內部壓力分佈模擬 77
4-6 油腔內部溫度分佈模擬 84
第五章 實驗研究 92
5-1 實驗架設 92
5-1-1 液靜壓旋轉平台 93
5-1-2 供油設備系統及流體冷卻單元 96
5-1-3 驅動設備裝置 98
5-1-4 量測設備 99
5-2 實驗用節流器模組 102
5-3 實驗方法及步驟 103
5-3-1 實驗方法 103
5-3-2 實驗步驟 104
5-4 實驗結果 107
5-4-1 軸承剛性實驗結果 107
5-4-2 軸承運動精度量測結果 116
第六章 結論與未來工作 127
6-1 結論 127
6-2 未來工作 128
參考文獻 131
[1] Girard, L.D., 1862, “Application des Surfaces Glissantes, ” , Paris.
[2] 王寶沛、翟鵬等,液體靜壓軸承動態特性的探討,液壓與氣動,2007年第8期
[3] Raimondi, A. A., Boyd, J., 1957, “An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing,” Lubr. Eng. 13(1):28-37.
[4] Mori H. and Yabe H. “A theoretical investigation on hydrostatic bearing,” Bull. JSME Vol. 6, N0.22, p.354-363, 1963.
[5] EI-Sherbiny M., Salam F., EI-Hefnawy N., “Optimum design of hydrostatic journal bearing: II. Minimum power.” Trib. Int. 1984;17(3):162-166.
[6] Stanley, B.M., and Alfred, M.L., “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffness,” Journal of Basic Engineering, p.179-187, 1961.
[7] Ling, T. S., “On the optimization of the stiffness of externally pressurized bearings.” Trans. ASME. J. Basic Eng. 1962; 84:119-122.
[8] O’Donoghue, J. P., “Parallel orifice and capillary control for hydrostatic journal bearings.” Tribology 1972;5:81-82.
[9] S. C. Sharma, S. C. Jain, R. Sinhasan and R. Shalia, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings,” Tribology International Vol. 28, 1995, pp. 531-539.
[10] S. C. Sharma, R. Sinhasan, S. C. Jain, N. Singh and S. K. Singh, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries,” Tribology Transactions, Vol.41, 1998, pp.375 – 381.
[11] Mohsin, M.E., “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research, p.129-424,1962
[12] Mayer, J. E. and Shaw, M. C., “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, p.291-, 1963.
[13] Rowe, W. B. and O’Donoghue, J.P., “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology, 1970.
[14] W. B. Rowe, “Hydrostatic and hybrid bearing design”, 1983, Butterworths pressed.
[15] Moris, S. A. “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME, Ser. F, Vol. 94, 1972.
[16] N. Tully, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME, 1977.
[17] Pande, S. S., Somasundaram S., “Analysis of a four-pocket hydrostatic journal bearing with a position-sensing variable restrictor.” Wear 1979; 54:331-341.
[18] Osumi T., Mori H., Ikeuchi K., “Effects of stabilizer on initial response of self controlled externally pressurized bearings.” Trans. JSLE 1985;20:651-657.
[19] Yoshimoto S., Anno Y., Amari K., “Static characteristics of hydrostatic journal bearing with a self controlled restrictor employing floating disk.” Trans. JSLE, 1990;56:3360-3367.
[20] Yoshimoto S., Kikuchi K., “Step response characteristics of hydrostatic journal bearings with self-controlled restrictor employing floating disk.” Trans. Int., 1999;121(4):315-320.
[21] Robert Schoenfold, “Regulator for adjusting the fluid flow in a hydrostatic or aerostatic device.” US Patent number 6276491B1, 2001.
[22] N. Singh, S. C. Sharma, S. C. Jain and S. S. Reddy, “Performance of membrane compensated multirecess hydrostatic hybrid flexible journal bearing system considering various recess shapes,” Tribology International, Vol. 37, 2004, pp.11-24.
[23] Kotilainen M. S., Slocum A. H., “Manufacturing of cast monolithic hydrostatic journal bearings.” Precision Eng. 2001;25:235-244.
[24] N.R. Kane, J. Sihler and A.H. Slocum, “A hydrostatic rotary bearing with angled surface self-compensation,” Prec. Eng. 27, 2003, pp. 125–139.
[25] Ghosh, B., 1972, “An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill,” Wear Vol. 21, No.2, pp.367-375
[26] Ghosh, B., 1973, “Load and Floe Characteristic of Capillary-compensated Hydrostatic Journal Bearing, ” Wear. Vol. 23, No.3, pp.377-386.
[27] N.R. Kane, J. Sihler and A.H. Slocum, 2003, “A Hydrostatic Rotary Bearing with Angled Surface Self-compensation,” Prec. Eng. 27, pp. 125–139.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *