帳號:guest(18.225.57.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王仁佑
作者(外文):Wang, Ren-Yu
論文名稱(中文):閉式靜壓導軌設計與特性分析
論文名稱(外文):Design and Characterization of the Closed-type Hydrostatic Slideway
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):蕭德瑛
林士傑
黃華志
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033576
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:113
中文關鍵詞:閉式靜壓導軌油膜均化誤差軸承剛性
外文關鍵詞:Closed-type hydrostatic slidewayError-averaging effectBearing stiffness
相關次數:
  • 推薦推薦:1
  • 點閱點閱:306
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文設計、製作並測試一組液靜壓線性平台系統。並將其裝配毛細管節流器,驗證其理論,並推導新型主動式補償節流器應用於其上之特性,此節流器係以一彈性元件的變形來感測油腔壓力的變化並作自動壓力補償,具有一體化的特色,故除了可以大幅提升軸承承載力、剛性及動態反應速度外,並有零件少、加工及組裝容易、成本低等優點。
在理論方面,首先建立毛細管節流液靜壓軸承與新型主動式補償液靜壓軸承的理論,推導出裝有不同節流器的對向墊液靜壓軸承之承載力與剛性公式。接著,針對軸承系統具多個油腔的實際應用狀況,推導公式並進行數值模擬,探討具不同節流器之液靜壓軸承系統中,各油腔剛性與系統剛性之關係,模擬結果證實各油腔剛性向量相加總合即為系統剛性值。
此外,本文亦針對液靜壓對向墊軸承系統配用毛細管節流器以及新型主動式補償液靜壓節流器,進行閉式靜壓導軌靜態特性的推導,並進一步設計一線馬驅動、光學尺回授之液靜壓導軌系統。同時針對液靜壓軸承均化誤差效應進行理論建模,對半波及全波兩種靜壓導軌平坦度誤差下,靜壓導軌的垂直度誤差進行研究,並獲得可得最佳均化誤差效果的設計參數。在實驗方面,本文針對承載力與剛性需求,設計製作毛細管節流器於液靜壓線性運動平台系統,以實驗證明理論推導與數值模擬的正確性,並對此滑軌進行導軌運動誤差量測
This thesis designed, fabricated, and tested a linear stage equipped with hydrostatic bearings. We verified the theory by applying it with capillary restrictor and theoretically investigated its characteristics when it was equipped with a novel pressure self-sensing compensating restrictor. The restrictor features an elastic element that deforms in response of the pressure variation of the oil chamber. It results in the change of the flow resistance of the restrictor, therefore, achieves the function of self-sensing compensation. Since the design integrates the restrictor with the bearing pad, it possesses the advantages of high load capacity, stiffness, and damping, in addition to fewer components, easy manufacturing and assembly, less cost.
This study started with construction of theoretical models of the hydrostatic bearings installed with capillary and the novel self-regulating restrictors, respectively. The equations governing the load capacity and stiffness of these two-types of bearings with opposed pads, respectively, were derived. Then, the stiffness equation of the bearing system with multiple pads (oil chambers) was developed; we also simulated the stiffness relationship between discrete pocket and the whole system. The simulation results confirm the vector additive characteristic of the stiffness of multiple-pad bearing system.
This study also performed static analyses of closed-type hydrostatic slideway bearings installed with either a capillary or a self-sensing compensating restrictor. Furthermore, this study designed and fabricated a linear motor actuating, linear scales back feeding linear stage with the two-types of restrictors based on the desired load capacity and stiffness. Then, we study the error-averaging effect of the oil film on the hydrostatic slideway vertical straightness, in the half-wave and full-wave type surface form errors in order to gain the finest error-averaging parameter. The load capacity and stiffness of the closed-type linear systems were verified, first, with the numerical simulation, then, confirmed with experiments. The error motion of the hydrostatic slideway was also measured
摘要 I
ABSTRACT II
誌謝 V
目錄 VII
圖目錄 IX
符號表 XII
第一章 介紹 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1 徑向液靜壓軸承之研究 3
1-2-2 液靜壓滑軌之研究 4
1-2-3 液靜壓導軌之應用[42] 4
1-2-4 固定式節流器之研究 6
1-2-5 主動式節流液靜壓軸承之研究 7
1-2-6 表面自補償節流軸承的研究 9
1-3 研究動機與論文內容 10
第二章 液靜壓軸承特性之理論探討 12
2-1 毛細管節流液靜壓對向墊模組分析 12
2-2 主動式補償節流液靜壓軸承對向墊分析 17
2-3 液靜壓軸承系統剛性設計 24
第三章 液靜壓導軌理論分析與模擬 29
3-1 液靜壓導軌形式 29
3-2 毛細管節流器應用於不等油腔閉式液靜壓導軌 35
3-3 主動式補償節流不等油腔閉式液靜壓導軌 44
3-4 均化誤差效應對運動直線度的影響 46
3-4-1 滑塊運動誤差分析 47
3-4-2 面型方程為半波時的運動誤差 49
3-4-3 面型方程為全波時的運動誤差 52
第四章 不等油腔閉式液靜壓導軌設計 56
4-1 對向墊軸承結構設計 56
4-2 毛細管分配器設計 61
4-3 線性馬達配置規劃 63
4-4 光學尺配置規劃 67
4-5 功率與溫升考量 68
第五章 實驗 75
5-1 液靜壓導軌性能驗證實驗架設 75
5-2 液靜壓導軌系統設計 76
5-2-1 毛細管節流液靜壓導軌設計 76
5-2-2 液靜壓導軌組裝 79
5-3 量測設備 81
5-4 供油設備 83
5-5 實驗方法與步驟 84
5-5-1 液靜壓導軌靜態特性實驗 84
5-5-2 液靜壓軸承性能驗證實驗 86
5-5-3 液靜壓導軌誤差均化效應實驗 88
5-6 實驗結果與討論 91
5-6-1 液靜壓導軌靜態特性實驗結果與討論 91
5-6-2 液靜壓軸承性能驗證實驗結果與討論 94
5-6-3 液靜壓導軌誤差均化效應實驗結果與討論 97
第六章 結論與未來工作 101
6-1 結論 101
6-2 未來工作 102
附錄 104
附錄A Lumped parameter modeling 104
參考文獻 111
Girard, L. D., 1862, Application des Surfaces Glissantes, Bachelier, Paris.
[2] 黃華志, 2009 , “液靜壓軸承技術清大演講, ”工研院機械所.
[3] 王寶沛、翟鵬等, 2007 , “液體靜壓軸承動態特性的探討, ”液壓與氣動,第8期.
[4] Raimondi, A. A., Boyd, J., 1957, “An analysis of orifice and capillary compensated hydrostatic journal bearing,” Lubr. Eng. Vol. 13, No.1, pp.28-37.
[5] Singh, D. V., Sinhasan, R. and Chai, R. C., “Finite Element Analysis of orifice Compensated Hydrostatic journal bearings,” Tribology International Vol. 9, No.6, pp.281-284.
[6] Mori, H., Yabe, H., 1963, “A theoretical investigation on hydrostatic bearing,” JSME Vol. 6, No.22, pp.354-363.
[7] EI-Sherbiny, M., Salam, F., EI-Hefnawy, N., 1984, “Optimum Design of Hydrostatic Journal bearing: I. Maximum Load Capacity,” Trib. Int. Vol. 17, No.3, pp.155-161.
[8] Telingater, V. S., 1972, “Hydrostatic Slideways Using Standard Bearings, ” Machines and Tooling. Vol.43, No.2, pp.15-20.
[9] Yakir, E. M., 1973, “Regulators for Open Hydrostatic Slidways,” Machines and Tooling Vol. 124, No.8.
[10] O’Donoghue, J. P., 1972, “Parallel Orifice and Capillary Control for Hydrostatic Journal bearings,” Tribology International Vol. 5, pp.81-82.
[11] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1998, “Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries,” Tribology Transactions Vol.41, pp.375-381.
[12] Shamoto E, Park CH, Moriwaki T, 2001, “Analysis and improvement of motion accuracy of hydrostatic feed table.” CIRP Annals-Manufacturing Technology, pp.285-290.
[13] Fei Xue, Wanhua Zhao, Yaolong Chen, Zhiwei Wang, “Reseach on error averaging effect of hydrostatic guideways”2012, Precision Engineering, pp. 84-90.
[14] Sharma, S.C., Jain, S. C., Sinhasan R., and Shalia, R., 1995, “Comparative Study of the Performance of Six-pocket and Four-pocket Hydrostatic-Hybrid Flexible Journal Bearings,” Tribology International Vol. 28, pp.531-539.
[15] Ling, T. S., 1962, “On the Optimization of the Stiffness of Externally Pressurized Bearings,” Trans. ASME. J. Basic Eng. Vol. 84, pp.119-122.
[16] Mohsin, M. E., 1963, “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research pp.129-424.
[17] Rowe W. B., 1976, Hydrostatic Bearing Patent Application no.51919/67. Publish 15th November170 (1):602. Assigned to Wickman Ltd.
[18] Rowe W. B. , 1969, Hydrostatic bearing patent application no.22072/66. Publish 15th November 170 (1):602. Assigned to Wickman Ltd.
[19] Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology. Vol.184, pp.1-9.
[20] Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME. Ser. F, Vol. 94,
[21] Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, pp.291
[22] Osumi T., Mori H., Ikeuchi K., 1985, “Effects of Stabilizer on Initial Response of Self Controlled Externally Pressurized Bearings,” Trans. JSLE, Vol. 20, pp.651-657.
[23] Tully, N., 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME. Vol. 99, No.1, pp.106-112
[24] Yoshimoto, S., Anno, Y., Amari K., 1990, “Static Characteristics of Hydrostatic Journal Bearing with a Self Controlled Restrictor Employing Floating Disk,” Trans. JSLE. Vol. 56, pp.3360-3367.
[25] Yoshimoto S., Kikuchi K., 1999, “Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictor Employing Floating Disk,” Trans. Int. Vol.121, No.4, pp.315-320.
[26] Robert Schoenfold, 2001, “Regulator for Adjusting the Fluid Flow in a Hydrostatic or Aerostatic Device.” US Patent number 6276491B1.
[27] Singh, N., Sharma, S. C.,Jain, S. C., and Reddy, S. S., 2004, “Performance of Membrane Compensated Multirecess Hydrostatic Hybrid Flexible Journal Bearing System Considering Various Recess Shapes, ” Tribology International Vol. 37, pp.11-24.
[28] Kotilainen, M. S., Slocum, A. H., 2001, “Manufacturing of Cast Monolithic Hydrostatic Journal Bearings, ” Precision Eng. Vol. 25, pp.235-244.
[29] Kane, N. R., Sihler, J., and Slocum, A. H., 2003, “A Hydrostatic Rotary Bearing with Angled Surface Self-compensation, ” Prec. Eng. Vol. 27, pp.125-139.
[30] Ghosh, B., 1973, “Load and Floe Characteristic of Capillary-compensated Hydrostatic Journal Bearing, ” Wear. Vol. 23, No.3, pp.377-386.
[31] 張善鐘, 1993, “精密儀器結構設計手冊.”
[32] Rowe, W. B., 1983, “Hydrostatic and Hybrid Bearing Design,” Butterworths pressed.
[33] Slocum, A. H., 1992, “Precision Machine Design.” Prentice Hall, New Jersey.
[34] William, A. G., 1980, “Fluid Film Lubrication.” John Wiley & Sons Inc.
[35] Jia-Wei Lu, Wei-Chih Lee, Yu-Min Hung, and Cheng-Kuo Sung, 2011, “A Novel Design of a Self-sensing Compensating Restrictor/Pad Module for Hydrostatic Bearings,” CSME. No. C07-050.
[36] Ghosh, B., 1972, “An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill,” Wear Vol. 21, No.2, pp.367-375.
[37] 鍾洪, 2007, “液體靜壓動靜壓軸承設計使用手冊.”
[38] 小栗富士雄、小栗達男, 1992 , ”標準機械設計圖表便覽, ” 眾文圖書股份有限公司.
[39] 蔡明祺等,線性馬達驅動之工具機系統簡介,機械工業雜誌,2002年4月
[40] 線性馬達在工具機進給系統上的應用,財團法人精密機械研究發展中心,技術通報第98期
[41] 歐陽渭城,1998,“靜壓軸承-設計與運用.”,機械技術出版社
[42] 楊添任,Nanosys-1000非球面加工機床液體靜壓導軌工作特性研究,2013,中南大學機電工程學院碩士論文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *