帳號:guest(3.138.34.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林思妘
論文名稱(中文):應變率對封裝可靠度影響評估
論文名稱(外文):The Strain Rate Effect on Reliability Assessment of Electronic Packaging
指導教授(中文):江國寧
口試委員(中文):鄭仙志
蔡明義
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033571
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:功率模組晶圓級晶片尺寸封裝應變率熱循環網格劃分尺寸
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
焊錫接點(solder joints)是電子封裝常見的電訊接點,也用於封裝體和PCB (印刷電路板)之間的機械支撐。在熱循環測試(thermal cycling test, TCT)時,由於電子組件和PCB之間熱膨脹係數不匹配(Coefficient of Thermal Expansion Mismatch)所產生的熱應變,使得材料間發生疲勞破壞,尤其銲錫接點與焊墊(pad)的交界處常為裂紋發生位置,因此焊錫接點的可靠度為首要課題。並且無鉛焊錫有較高的對應溫度(homologeous temperature),在本研究熱循環負載下,操作溫度大於焊錫接點熔點溫度的1/3倍,因此潛變是主要的破壞機制。
加速熱循環測試被廣泛運用於封裝的可靠度評估,為了降低可靠度測試的時間,加快升降溫速率(ramp rate)或降低持溫時間(dwell time)的方法常被用來縮短測試的時間,然而當溫度循環的升降溫速率越快,會造成材料應變速率和應力的性質發生變化,影響材料破壞情形,尤其JEDEC (Joint Electron Device Engineering Council) standard對於TCT的升降溫速率條件沒有嚴格定義,測試溫度歷程不一致的情形,將影響焊錫接點的可靠度評估。
本文以模擬的方式建立功率模組(Power Module)的大面積焊錫和晶圓級晶片尺寸封裝(Wafer Level Chip Scale Packaging, WLCSP)的錫球之有限元素模型,探討升溫速率改變時,不同應變速率下焊錫接點的物理損傷量,藉此了解應變速率與焊錫接點的幾何和疲勞壽命之間的關聯性。
本研究中使用線性溫度相關的楊氏係數和雙曲正弦潛變方程式來描述焊錫接點的變形。此外,本研究選定合適的網格密度分析應變率對於焊錫接點損傷的影響,使用Darveaux相關的經驗公式求得焊錫接點的壽命週期數,並將模擬結果與實驗文獻進行比對,驗證焊錫接點的疲勞壽命,本文提供了一個精確的元素尺寸,將可用於焊錫接點潛變分析。
藉由以上的分析,功率模組的大面積焊錫和WLCSP的錫球兩種不同幾何形狀的焊錫接點之模擬結果有一致的情形,當焊錫接點承受之應變率越高,皆導致封裝體的可靠度有下降的趨勢。

摘要 II
Abstract IV
誌謝 VI
表目錄 X
圖目錄 XII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.3研究目標 9
第二章 基礎理論 12
2.1有限元素法理論基礎 12
2.1.1線彈性有限元素法理論 12
2.1.2材料非線性有限元素法理論 17
2.1.3數值方法與收斂準則 20
2.2潛變行為 22
2.3焊錫接點可靠度分析 24
2.3.1 Coffin-Manson應變法 25
2.3.2 Darveaux能量密度法 26
第三章 研究方法 27
3.1有限元素模型之基本假設 27
3.2功率模組之幾何尺寸與有限元素模型的建立 28
3.3功率模組之材料設定 30
3.4 功率模組之邊界條件與負載設定 31
3.5 模擬結果與分析 34
3.5.1二維模型模擬與實驗文獻之驗證 34
3.5.2焊錫接點之潛變行為探討 39
3.5.3 溫度負載形式影響 41
3.5.4 焊錫接點之幾何影響 43
3.5.5溫度負載範圍之影響 45
3.6 黏彈性銲錫材料參數 47
第四章 功率模組與WLCSP潛變行為分析 49
4.1功率模組模擬分析 49
4.1.1焊錫接點之潛變行為分析 49
4.1.1.1疲勞壽命預估驗證 51
4.1.1.2應變率對焊錫接點之疲勞破壞影響 54
4.2 WLCSP模擬分析 56
4.2.1有限元素模型之基本假設 57
4.2.2 WLCSP之幾何尺寸與有限元素模型的建立 58
4.2.3 WLCSP之材料設定 60
4.2.4 WLCSP之邊界條件與負載設定 61
4.2.5錫球之潛變行為探討 62
4.2.5.1疲勞壽命預估驗證 63
4.2.5.2應變率對錫球之疲勞破壞影響 66
第五章 結論與未來展望 68
參考文獻 72
[1] JEDEC Solid State Technology Association, JESD22-A104D: Temperature Cycling, 2005.
[2] T. Y. Hung, C. J. Huang, C. C. Lee, C. C. Wang, K. C. Lu, and K. N. Chiang, “Investigation of solder crack behavior and fatigue life of the power module on different thermal cycling period,” Microelectronic Engineering, Vol. 107, pp. 125-129, 2013.
[3] J. M. Thebaud, E. Woirgard, C. Zardini, S. Azzopardi, O. Briat, and J. M. Vinassa, “Strategy for designing accelerated aging tests to evaluate IGBT power modules lifetime in real operation mode,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, Issue 2, pp. 429-438, 2003.
[4] G. Lefranc, T. Licht, and G. Mitic, “Properties of solders and their fatigue in power modules,” Microelectronics Reliability, Vol. 42, Issue 9-11, pp. 1641-1646, 2002.
[5] Y. H. Pao, E. Jih, R. Liu, V. Siddapureddy, X. Song, R. McMillan, and J.M. Hu, “A thermal fatigue model for surface mount leadless chip resistor solder joints,” Sensing, Modeling and Simulation in Emerging Electronic Packaging, American Society of Mechanical Engineers, pp.1-12, Atlanta, USA, Nov. 17-22, 1996.
[6] Y. Qi, H. R. Ghorbani, and J. K. Spelt, “Thermal fatigue of SnPb and SAC resistor joints: analysis of stress-strain as a function of cycle parameters,” IEEE Transactions on Advanced Packaging, Vol. 29, Issue 4, pp. 690-700, 2006.
[7] K. Guth and P. Mahnke, "Improving the thermal reliability of large area solder joints in IGBT power modules," CIPS, pp1-6, June, 2006.
[8] M. Bouarroudj, Z. Khatir, S. Lefebvre, L. Dupont, J. P. Ousten, and F. Badel, “Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules,” European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1-10, Septemper, 2007.
[9] K. C. Wu and K. N. Chiang, "Investigation of solder creep behavior
on wafer level CSP under thermal cycling loading," ICEP2014, Toyama, Japan.
[10] H. L. J. Pang, Y. P. Wang, X. Q. Shi, and Z. P. Wang, “Sensitivity study of temperature and strain rate dependent properties on solder joint fatigue life,” in Proc. IEEE/CPMT Electronics Packaging Technology Conf., pp. 184–189,1998.
[11] H. L. J. Pang and T.H. Low “Modeling thermal cycling and thermal shock tests for FCOB” Proceedings of ITHERM Inter Society Conference on Thermal Phenomena, pp 987 - 992,2002.
[12] S.Sahasrabudhe, E.Monroe, S.Tandon and M.Patel, "Understanding the effect of dwell time on fatigue life of packages using thermal shock and intrinsic material behavior," Electronic Components and Technology Conference, pp. 898-904, New Orleans, LA, May 27-30, 2003.
[13] Y. Aoki, I. Tsujie, and T. Nagai, “The effect of ramp rate on thermal fatigue testing of solder joints,” Espec Technology Report No.27, pp. 4-13, September, 2007.
[14] Y. Aoki, I. Tsujie, and T. Nagai, “The effect of ramp rate on temperature cycle fatigue in solder joints,” Espec Technology Report No.25, pp. 4-13, September, 2007.
[15] R. Darveaux and K. Banerji, ”Fatigue analysis of flip chip assemblies using thermal stress simulations and a coffin–mason relation,” Electronic Components and Technology Conference, pp,797-805, May, 1991.
[16] V.S. Sastry, J.C. Manock, and T.I. Ejim, ”Effect of thermal cycling ramp rates on solder joint fatigue life,” Journal of SMT Article, Vol 14-1, January, 2001.
[17] X. Fan, G. Raiser, and V.S. Vasudevan, “Effects of dwell time and ramp rate on lead-free solder joints in FCBGA packages,” Proc. Electronic Components and Technology Conference, pp. 901-906,2005.
[18] A. Yeo, C. Lee, and J. H. L. Pang, “Flip chip solder joint reliability analysis using viscoplastic and elastic-plastic-creep constitutive models,” IEEE Transactions on Components and Packaging Technologies, Vol. 29, Issue 2, pp. 355-363, 2006.
[19] M. Dusek, M. Wickham, and C. Hunt,” The impact of thermal cycling regime on the shear strength of lead-free solder joints,” Soldering & Surface Mount Technology, Vol. 17, pp.22-31, 2005.
[20] Y. Qi, R. Lam, R. H. Ghorbani, P. Snugovsky, and J. K. Spelt, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints,” J. Microelectron. Rel., Vol. 46, pp. 574–588, 2006.
[21] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of finite element analysis 4th, Wiley, 2002.
[22] R. C. Hibbeler, Mechanics of materials 6th, Pearson Education Inc., 2005.
[23] ANSYS User’s Mannual, ANSYS Inc. Company.
[24] L. Hua, S. Ridout, C. Bailey, L. S. Wei, A. Pearl, and M. Johnson, “Computer simulation of crack propagation in power electronics module solder joints,” International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-6, Shanghai, China, Jul. 28-31,2008.
[25] L. Hua, T. Tilford, X. Xiangdong, and C. Bailey, “Thermal-mechanical modeling of power electronic module packaging,” International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, pp. 249-254 ,London, UK, Apr. 16-18, 2007.
[26] H. Ma and C. J. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging,” Journal of Materials Science, Vol. 44, Issue 5, pp. 1141-1158, 2009.
[27] 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局,2006.
[28] R. Darveaux, K. Banerji, A. Mawer, and G. Dody, “Reliability of plastic ball grid array assembly,” Chapter 13 in Ball Grid Array Technology, Ed. Lau, J. H., McGraw-Hill, pp. 379-442, 1995.
[29] R. Darveaux, “Effect of simulation methodology on solder joint crack crowth correlation,” 50th Electronic Components and Technology Conference, pp.1048-1058, Las Vegas, Nevada, USA, May 21-24, 2000.
[30] C. C. Chiu, C. J. Wu, C. T. Peng, K. N. Chiang, T. Ku, and K. Cheng, “Failure life prediction and factorial design of lead-free flip chip package,” Journal of the Chinese Institute of Engineers, Vol. 30, Issue 3, pp. 481-490, 2007.
[31] H. C. Huang, T. Y. Hung, C. C. Wang, K. C. Lu, and K. N. Chiang, "The solder creep behavior of power module subject to temperature cycling test with different temperature profiles," ICEP2013, Osaka, Japan, April 10-12, 2013.
[32] J. Lau and W. Dauksher, “Effects of ramp-time on the thermal fatigue life of SnAgCu lead-free solder joints”, ECTC,2005
[33] F. Garofalo, “Fundamentals of creep and creep-rupture in metals,”
Macmillan Company, New York, 1965.
[34] L. Hua, T. Tilford, and D. R. Newcombe, “Lifetime prediction for power electronics module substrate mount-down solder interconnect,” International Symposium on International Symposium on High Density Packaging and Microsystem Integration, pp. 1-6, Shanghai, China, Jun. 26-28, 2007.
[35] L. Hua, R. Steve, and B. Chris, “Computer simulation of crack propagation in power electronics module solder joints,” International Conference on Electronic Packaging Technology & High Density Packaging, 2008.
[36] J. H. Lau and S. Pan, “Creep behaviors of flip chip on board with 96.5Sn-3.5Ag and 100In lead-free solder joints,” Proceedings of IMAPS Microelectronics Conference, pp. 866-873, September, 2000.
[37] Microelectronics Packaging Material Database, Purdue University, Center for Information & Numerical Data Analysis &Synthesis (CINDAS).
[38] J.P. Clech, “Review and analysis of lead-free materials properties,” NIST
[39] R. Darveaux, “Effect of assembly stiffness and solder properties on thermal cycle acceleration factors,” Proc. 11th International Workshop on Thermal Investigations of ICs and Systems (THERMINC), Italy, 2005.
[40] N. S. Bosco, T. J. Silverman, and S. R. Kurtz, “On the effect of ramp rate in damage accumulation of the CPV die-attach,” IEEE, Texas, Austin, June, 2012.
[41] S. C. Chaparala, B. D. Roggeman, J. M. Pitarresi, B. G. Sammakia, J. Jackson, G. Griffin, and T. McHugh, “Effect of geometry and temperature cycle on the reliability of WLCSP solder joints,” IEEE Transactions on Components and Packaging Technologies, vol. 28, pp. 441-448, 2005.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *