帳號:guest(3.15.208.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佳圻
作者(外文):Tsai, Chia Chi
論文名稱(中文):雙邊式功率模組銅凸塊電訊接點之可靠度分析與評估
論文名稱(外文):Reliability Analysis of Cu Bump Interconnection used in Double-sided Power Module
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo Ning
口試委員(中文):鄭仙志
蔡明義
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033564
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:128
中文關鍵詞:雙邊式功率模組功率循環凸塊接點接點可靠度介金屬化合物
外文關鍵詞:double-sided power modulepower cyclebump interconnectionreliability of interconnectionintermetallic compounds
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於科技的發展與使用者的需求,作為提升能源轉換效率之功率模組被廣泛的運用,而高功率與高整合性成為現今功率模組發展的趨勢。傳統功率模組使用打線進行電訊導通,並以強制水冷系統作為主要散熱途徑。但隨著使用功率的提升,傳統功率模組只依靠單邊進行散熱,將無法適用高功率下產生之熱能,因此必須發展出能夠解決高接面溫度與高承載電流的功率模組。雙邊式功率模組因可以有效地減少散熱熱阻以及提供較多的散熱途徑,作為實現高功率模組的結構而被廣泛研究。現有之雙邊式功率模組皆以整面式焊料進行電訊接合,但參考實驗室參與之計畫的研究成果,採用凸塊電訊接點的結構可以有效控制電流密度以及設計電訊接點之DNP位置,本研究將針對使用凸塊電訊接點的雙邊式功率模組之可靠度進行探討。
功率模組在承受往復的功率負載時,造成IGBT晶片接面溫度大幅變化,材料組成間的熱膨脹係數不匹配,將導致電訊接點發生熱應力與應變,熱應力與應變將是接點發生失效之主因。本研究將利用有限元素分析軟體ANSYS,針對上述結構進行電熱耦合與熱固分析,以模擬模組在功率循環下電訊接點之機械行為。接著利用該模擬方法分析此結構於不同散熱條件下進行數個功率循環之後電訊接點的可靠度,針對易破壞之區域進行探討,並根據電子封裝的概念提出改進之方法。最後亦針對用於凸塊接點接合之IMC結構進行參數化分析,探討設計參數對於可靠度之影響。由模擬結果顯示,雙邊式功率模組採用雙邊水冷之方式可以得到較低之接面溫度與凸塊可靠度,但是在IMC之可靠度卻有較差之表現,此問題可以藉由放大角落接點尺寸增加其強度之方式得到有效地改善,另外,IMC之結構參數,若能在可以保持接點有完整接合之情況下,盡量減少IMC之厚度可以有效增加凸塊的可靠度。
本研究探討之結構將使用Cu/Sn IMC進行電訊接點的接合,但是關於該材料之破壞強度未能有一可靠之參考數據,而且於功率模組運作時,其接面溫度會達到200˚C之高溫,常溫下的破壞強度將不適用於此處之可靠度分析。故本研究最後提出建議之探討Cu/Sn IMC破壞強度的實驗設計,藉由設計符合實驗需求之試片,並以熱處理與剪力測試來掌握IMC之成長以及其破壞強度,最後再搭配加熱模組進行剪力測試,藉此找出IMC於高溫下之破壞強度。
Due to development of technology and the users demand, power modules are widely used with the characteristic that it can promote energy transfer efficiency. Nowadays, high power and high integrated are the modern trends in development of power modules. Conventional power modules utilize bonding wire for interconnection and dissipate heat mainly based on forced cooling system. However, with the rising of working power, it is necessary to create power modules which can solve high junction temperature and effort high working current. Double-sided power modules are one of the structures which can realize high power module application with reducing junction temperature efficiently and providing more heat dissipation path. According to the research results of Tsing Hwau-Delta project, using bump interconnection can control the current density and design the DNP position of bumps freely, so that it is more flexible in the view of design than face-to-face solder interconnection which is utilized in existing double-sided power module. This research is focus on double-sided power module with bump interconnection and investigating reliability of the bump.
When the power modules are subjected to the cyclic power load, the junction temperature varies significantly; the thermal stress and strain resulting from the mismatch between the coefficients of thermal expansion of materials causes the bumps to failure. This research will construct finite element models to conduct electro-thermal and thermal-mechanical analysis in aforementioned structure by commercial software ANSYS, and to simulate the mechanical behaviors of bump interconnection under power cycling. By using this simulation method, an analysis of the reliability of bump interconnection when it is in different cooling conditions and subjected to several power cycles is achieved. The area there the bumps will easily failure is discussed, and proposing methods to enhance its reliability with concepts used in advanced packaging. Finally, parameter analysis of IMC structure in bump interconnection is also executed to understand the effect of design parameters of IMC. From results of simulation, double-sided power module with double-sided cooling can get lower junction temperature and better reliability of copper bump. However, the structure in this condition possesses worse IMC reliability and this disadvantage can be improved by enlarging the corner bumps which have the largest DNP. In addition, under the premise that the bumps can keep complete joint, the thickness of IMC should be reduced as possible as it can, and the reliability of IMC will be increased.
The bump interconnection used in this research is joined by Cu/Sn IMC, and it is needed that to get a credible value of the failure strength of the IMC material. Moreover, when the power module works, the junction temperature will reach 200 °C. Hence, the failure strength of IMC measured at room temperature is not suitable for the reliability analysis in this condition. This research proposes a recommended experiment design to investigate the failure strength of Cu/Sn IMC. Using thermal aging treatment to control the growth of IMC and utilizing shear test with heating module to measure its failure strength at high temperature.
摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.2.1 功率模組之近期發展
1.2.2 整合型功率模組
1.2.3 雙邊式功率模組
1.2.4 功率模組之散熱系統
1.2.5 IMC成長之擴散效應
1.2.6 IMC抗剪強度之測試
1.3 研究目標
第二章 基礎理論
2.1 有限元素法
2.1.1 線彈性有限元素法理論
2.1.2 材料非線性有限元素法理論
2.2 數值分析法與收斂準則
2.3 破壞準則
2.3.1 最大主應力破壞準則
2.3.2 最大剪應力破壞準則
2.3.3 最大畸變能破壞準則
2.4 IMC成長機制
2.5 JEDEC剪力推球測試規範
2.6 熱傳遞分析理論基礎
2.6.1 熱傳遞行為
2.6.2 封裝元件之熱傳遞分析
2.6.3 等效熱傳系數分析
第三章 有限元素模擬
3.1 有限元素模型
3.1.1 電熱耦合分析之材料參數與邊界條件
3.1.2 熱固分析之材料參數與邊界條件
3.1.3 雙邊功率模組電流分析
3.1.4 暫態電熱耦合與熱固分析
3.2 不同冷卻系統配置
3.2.1 單邊與雙邊水冷結構之比較
3.3 第二功率循環之比較
3.3.1 單邊水冷結構
3.3.2 雙邊水冷結構
3.4 單邊水冷結構於第三功率循環之行為分析
3.4.1 截至第四功率循環之行為分析
3.5 最大DNP區域之分析
3.5.1 角落電訊接點之分析
3.5.2 單邊水冷結構
3.5.3 雙邊水冷結構
3.5.4 結果與討論
3.6 放大角落電訊接點之影響
3.6.1 單邊水冷結構
3.6.2 雙邊水冷結構
3.6.3 結果與討論
3.7 放大角落電訊接點與原模型在多循環下之比較
3.7.1 單邊水冷結構
3.7.2 雙邊水冷結構
3.7.3 結果與討論
第四章 IMC層之參數分析
4.1 IMC厚度之影響
4.2 不同強度IMC之影響
4.3 內置緩衝結構之影響
第五章 實驗方法
5.1 IMC成長實驗
5.1.1 試片製備
5.1.2 實驗流程
5.2 剪力測試
5.2.1 實驗儀器
5.2.2 不同接點組成之剪力測試流程
5.2.3 不同溫度下之剪力測試流程
第六章 結論與未來展望
參考文獻
[1] T. Y. Hung, S. Y. Chiang, C. J. Huang, C. C. Lee and K. N. Chiang, “Thermal–mechanical behavior of the bonding wire for a power module subjected to the power cycling test, ” Journal of Microelectronics Reliability, Vol. 51, pp.1819-1823, 2011.
[2] J. G. Bai, G. Q. Lu, and X. S. Liu, “Flip-chip on flex integrated power electronics modules for high-density power integration, ” IEEE Transactions on Advanced Packaging, Vol. 26, pp. 54-59, 2003.
[3] C. M.Johnson, C. Buttay, S. J. Rashid, F. Udrea, G. A. J. Amaratunga, P. Ireland and R. K. Malhan, “Compact Double-Side Liquid-Impingement-Cooled Integrated Power Electronic Module, ”Power Semiconductor Devices and IC's, pp.53-56, 27-31 May 2007.
[4] M. Schneider-Ramelow, T. Baumann and E. Hoene, “Double-side cooled semiconductors for automotive applications, “ Fraunhofer IZM Berlin. Company. 2008.
[5] IEEE Trans Industry Application, Vol. 27, pp. 93, 1991.
[6] S. W. Yoon, M. V. Glover, H. A. Mantooth, and K. Shiozaki, “Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles, ” Journal of Micromechanics and Microengineering, Vol.23, pp.015-017, 2013.
[7] K. Nakatsu, H. Suzuki, A. Nishihara and K. Sasaki, “Next-generation Inverter Technology for Environmentally Conscious Vehicles, ” Hitachi Review Vol. 61, No.6, 2012.
[8] T. Kimura, R. Saitou, K. Kubo, K. Nakatsu, H. Ishikawa and K. Sasaki, “High-power-density Inverter Technology for Hybrid and Electric Vehicle Applications, ” Hitachi Review Vol. 63, No.2, 2014.
[9] T. Tokuyama, K. Nakatsu, A. Nishihara, K. Sasaki and R. Saito, “A Novel Direct Water and Double-Sided Cooled Power Module for HEV/EV Inverter, ” International Conference on Electronics Packaging, April 23-25, 2014, Toyama, Japan.
[10] C. T. Peng, C. T. Kuo, and K. N. Chiang, “Experimental characterization and mechanical behavior analysis on intermetallic compounds of 96.5Sn-3.5Ag and 63Sn-37Pb solder bump with Ti-Cu-Ni UBM on copper chip, ” Journal of Microelectronics Reliability, Vol. 46, pp.523-534, 2006.
[11] X. Y. Li, X. H. Yang, and F. H. Li, “Effect of isothermal aging on interfacial IMC growth and fracture behavior of SnAgCu/Cu soldered joints, ” Electronic Packaging Technology & High Density Packaging, pp.28-31, 2008.
[12] C. R. Yang, F. B. Song, and S. W. R. Lee, “Effect of Interfacial Strength between Cu6Sn5 and Cu3Sn Intermetallics on the Brittle Fracture Failure of Lead-free Solder Joints with OSP Pad Finish, ” Electronic Components and Technology Conference, pp.971-978, May 31-June 3, 2011, USA.
[13] F. Sun, P. Hochstenbach, W. D. Van Driel, and G. Q. Zhang, “Fracture morphology and mechanism of IMC in Low-Ag SAC Solder/UBM (Ni(P)-Au) for WLCSP, ” Journal of Microelectronics Reliability, Vol. 48, pp.1167-1170, 2008.
[14] B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, “Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing, ” Journal of ELECTRONIC MATERIALS, Vol. 39, 2010.
[15] Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, and K. Ishida, “Pb-free high temperature solder joints for power semiconductor devices, ” Transactions of The Japan Institute of Electronics Packaging, pp.79-84, 2009.
[16] K. Guth, D. Siepe, J. Görlich1, H. Torwesten, R. Roth, F. Hille, and F. Umbach, “New assembly and interconnects beyond sintering methods, ” Infineon Technologies AG, 2010.
[17] Q. K. Zhang, J. Tan, and Z. F. Zhang, “Fracture behaviors and strength of Cu6Sn5 intermetallic compounds by indentation testing, ” Journal of Applied Physics, pp.014502-014502-4, 2011.
[18] B. H. Kwak, J. M. Kim, M. H. Jeong, K. W. Lee, J. D. Kim, and Y. B. Park, “Interfacial Microstructure and Mechanical Reliability of Cu Pillar/Sn-Ag Bump for 3D packages, ” Electronics Packaging Technology Conference, pp.49-52, Dec 7-9, 2011, Singapore.
[19] B. H. Lee, J. S. Park, S. J. Jeon, K. W. Kwon , and H. J. Lee, “A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications, ” Journal of Electrochemical Society, pp.420-424, 2010.
[20] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of finite element analysis 4th, Wiley, 2002.
[21] R. C. Hibbeler, Mechanics of materials 6th, Pearson Education Inc., 2005.
[22] N. E. Dowling, Mechanical behavior of materials 2nd, Prentice-Hall, 1999.
[23] ANSYS User’s Manual, ANSYS Inc. Company, 2012.
[24] R. G. Budynas, J. K. Nisbett, Shigley’s Mechanical Engineering Design, McGraw-Hill, 2008.
[25] 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局2006
[26] S. Timoshenko, Strength of Materials, D. Van Nostrand Company, 1956.
[27] J. A. Collins, Failure of Materials in Mechanical Design, John Wiley and Sons, 1993.
[28] R. C. Juvinall, Stress, Strain, and Strength, McGraw-Hill, 1967.
[29] Y. G. Lee and J. G. Duh “Interfacial Morphology and Concentration Profile in the Unleaded Solder/Cu Joint Assembly, ” Journal of Materials Science: Materials in Electronics, pp.33-43, 1999.
[30] P. T. Viance, A. C. Kilgo, and R. Grant, “Intermetallic Compounds Layer Growth by Solid State Reactions between 52Bi-42Sn Solder and Copper, ” Journal of Microelectronics Reliability, Vol.24, pp.1493, 1985.
[31] JEDEC Solid State Technology Association, JESD22-B117A : Solder Ball Shear, 2000.
[32] J. P. Holman, Heat Transfer. 9th, McGraw-Hill, Inc, 2002.
[33] G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhole Company, New York, 1989.
[34] W. H. Chen, H. C. Cheng, H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging, ” IEEE Transactions on Components and Packaging Technologies, Vol.26, pp.222-232, March 2003.
[35] K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” J. Appl. Phys., Vol. 94, No. 9, pp. 5451-5473, 2003.
[36] G. Judith, “Microstructure and Mechanical Properties of Pb-Free Solder Alloy for Low Cost Electronic Assembly : A Review, ” Journal of Electronic Materials, Vol. 23, pp.693-700, 1994.
[37] Maeda K., Higashi M., Kokubu M., and Nakagawa S., “The Application of HITCE Ceramic Material for LGA-type Chip Scale Package”, 50th Electronic Components and Technology Conference, pp. 358-363, May 21-24, 2000, Las Vegas, NV, USA.
[38] Matsuzono S., Uegaki S., Sato S., and Matsuda S., “Snap Array CSPTM - Ceramic CSPs for High Performance and High Reliability Applications - ,” Electronic Components and Technology Conference, pp. 1600-1604, May 21-24, 2000, Las Vegas, NV, USA.
[39] Zhu J., “Effects of Anchor Pads in Micro-Scale BGA”, Electronic Components and Technology Conference, pp. 1731-1736, May 21-24, 2000, Las Vegas, NV, USA.
[40] A. Sato, Semiconductor package having enhanced ball grid array protective dummy members, Nec Corporation, US6287895, 2001
[41] 劉昌明,電訊接點配置、幾何及製造參數對微電子元件可靠度影響之研究,國立清華大學博士論文2004
[42] K. C. Chang and K. N. Chiang, “Improvements of Solder Ball Shear Strength of a Wafer-Level CSP Using a Novel Cu Stud Technology, ” IEEE Transactions on Components and Packaging Technologies, Vol. 27, pp.373-382, 2004.
[43] F. B. Song and S. W. R. Lee, “Investigation of IMC Thickness Effect on the Lead-free Solder Ball Attachment Strength: Comparison between Ball Shear Test and Cold Bump Pull Test Results, ” Electronic Components and Technology Conference, May 30-Jun 2, 2006, San Diego, CA, USA.
[44] L. Qi, J. Zhao, X. M. Wang and L. Wang, “The effect of Bi on the IMC growth in Sn-3Ag-0.5Cu solder interface during aging process, ” International Conference on the Business of Electronic Product Reliability and Liability, Apr 27-30, 2004, Shanghai, China.
[45] J. H. Hwang, Y. M. Kim, T. J. Kim, Y. H. Kim, and W. J. Lee, “Intermetallic compound formation in the interface between SAC305 solder and Cu-xZn-yNi substrates, ” International Conference on Electronic Packaging Technology & High Density Packaging, Aug 13-16, 2012, Guilin, China.
[46] S. J. Yang, X. H. Yang and X. Y. Li, “IMC’s growth behavior and the characterization of its size during isothermal aging, ” International Symposium on Advanced Packaging Materials, Oct 25-28, 2011, Xiamen, China.
[47] J. H. L. Pang, K. H. Prakash and T. H. Low, “Isothermal and Thermal Cycling Aging on IMC Growth rate in Pb-free and Pb-based Solder interfaces, ” Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, June 1-4, 2004, Las Vegas, NV, USA.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *