帳號:guest(18.217.80.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王緯翰
論文名稱(中文):介電泳奈米線穩健組裝及其應用於肺癌標記物感測器之開發
論文名稱(外文):Robust Assembly of Nanowires Based on Dielectrophoresis and Its Applications in Lung Cancer Biomarker Sensors
指導教授(中文):洪健中
口試委員(中文):黃國柱
陳治平
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033552
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:109
中文關鍵詞:介電泳過濾肺癌標記物氣體感測器
相關次數:
  • 推薦推薦:0
  • 點閱點閱:240
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究為二氧化鈦光電奈米線穩健組裝及其應用於肺癌標記物感測器之開發,內容主要可分成三個部份,第一部分技術為可程式化介電泳穩健組裝系統,利用此系統可以自動判定組裝於微電極間隙上之奈米線阻抗;第二部分技術為介電泳過濾系統,利用此系統可以篩選掉非奈米線之雜質,結合第一部分技術可精密穩健地組裝出10排奈米線陣列;第三部分技術為將二氧化鈦奈米線感測器應用於檢測肺癌標記物之一(2-丙基-1-戊醇),利用3-氨丙基三甲氧基進行化學修飾而提高感測器對此肺癌標記物之靈敏性、專一性以及選擇性。
在可程式化介電泳穩健組裝系統中,本研究利用LabVIEW軟體設計一個可程式化組裝系統達成同時監控結果與進行組裝,透過此設計提高了奈米線組裝的穩健度,此外利用電極的形狀來控制組裝的數量達到穩健組裝的目標。從ANSYS模擬結果可以得知90度尖形電極所形成的電場強度最集中且最強。然而在介電泳過濾系統中,圓形指叉狀電極的過濾效率最高,在流速為1 μL/min進行過濾之過濾效率為93.3 %。由所開發之技術來進行組裝,以一組10排奈米線之組裝來看,成功率由0 %提高到90 %。
本論文針對二氧化鈦奈米線感測器反應時間與閘極偏壓、紫外光強度之關係進行探討,並且應用於肺癌標記物之一(2-丙基-1-戊醇)之檢測。由實驗結果得知當施加偏壓達到其崩潰電壓3.4 V,其反應時間為62.5毫秒;當紫外光強度為6 mW/cm2時,其光電轉換效率為56.38 %。肺癌標記物感測實驗方面,測試了甲醇、乙醇、丙酮及2-丙基-1-戊醇不同濃度之氣體,在200 ppb濃度之感測專一性提升7.66倍、感測靈敏度提升1.72倍、選擇性提升213.68倍,其偵測極限為0.02 ppb。本論文研究所開發之肺癌標記物感測器未來有潛力應用於其他呼吸疾病檢測以及環境安全檢測等多方應用。
摘要
Abstract
致謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究背景
1.2 奈米材料自組裝技術
1.2.1 化學氣相沉積自組裝
1.2.2 磁力場自組裝
1.2.3 表面官能基自組裝
1.2.4 電場自組裝
1.3 研究動機
1.4 研究目的與方法
1.5 論文架構
第二章 光電半導體奈米線
2.1 光電半導體簡介
2.2 光電半導體能帶
2.3 光電半導體蕭基能障
2.4 光電半導體接面崩潰
2.5 光電半導體光催化反應
第三章 穩健光電半導體奈米線組裝之技術與平台
3.1 光電半導體二氧化鈦奈米線電紡絲製程
3.2 穩健組裝技術與平台建構
3.2.1 奈米線穩健組裝技術
3.2.1.1 介電質極化理論
3.2.1.2 介電泳原理
3.2.1.3 介電泳數學模型
3.2.2 穩健組裝平台架構
3.2.2.1 LabVIEW程式設計
3.2.2.2 LabVIEW人機介面
3.2.2.3 LabVIEW組裝平台
3.3 有限元素法介電泳組裝模擬與分析
3.3.1 電極幾何形狀模擬與分析
3.3.2 電極Z方向電場模擬與分析
3.3.3 二氧化鈦溶液濃度模擬與分析
3.4 穩健組裝平台應用於奈米材料之組裝
3.4.1 穩健組裝平台應用於二氧化鈦奈米線之組裝
3.4.2 穩健組裝與不同參數之探討
3.4.2.1 穩健組裝與不同流速之關係
3.4.2.2 穩健組裝與不同濃度之關係
3.4.3 穩健組裝平台之過濾系統架設
3.4.3.1 二氧化鈦溶液之材料種類
3.4.3.2 過濾電極與過濾效率之關係
3.4.3.3 過濾系統與流速之關係
3.4.3.4 過濾系統應用於尖形電極以及陣列組裝
3.5 結論
第四章 二氧化鈦奈米線感測器之電性量測
4.1 單根二氧化鈦奈米線電性量測
4.2 二氧化鈦奈米線感測器阻抗量測
4.3 紫外光強度與二氧化鈦奈米線感測器阻抗值之關係
4.4 閘極偏壓與二氧化鈦奈米線感測器阻抗值之關係
4.5 結論
第五章 二氧化鈦奈米線感測器應用於肺癌標記物檢測
5.1 肺癌感測器設計與規劃
5.2 肺癌標記物與有機氣體感測結果
5.3 肺癌標記物與有機氣體化學修飾感測結果
5.4 肺癌標記物與有機氣體選擇性感測結果
5.5 結論
第六章 結論以及研究成果與研究發表
6.1 總結
6.2 研究成果
6.3 本研究之學術貢獻點
6.4 未來研究建議
附錄
參考資料
發表著作
作者簡介
[1] Feynman, R.P., There's plenty of room at the bottom. Engineering and Science, 1960.
[2] J. Christopher Love, L.A.E., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. American Chemical Society, 2005. 105: p. 1103-1169.
[3] R. F. W. Bader, W.H.H., The ionic bond Journal of the American Chemical Society, 1965. 87: p. 3063-3068.
[4] George M. Whitesides, B.G., Self-assembly at all scales. Science, 2002. 295: p. 2418-2421.
[5] Jing Kong, N.R.F., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287: p. 622-625.
[6] Shoushan Fan, M.G.C., et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999. 283: p. 512-514.
[7] Ya-Li Li, I.A.K., et al., Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004. 304: p. 276-278.
[8] Xuesong Li, W.C., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324: p. 1312-1314.
[9] Zongping Chen, W.R., et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011. 10: p. 424-428.
[10] P. A. Maksym, T.C., Quantum dots in a magnetic field: Role of electron-electron interactions. Physical Review Letters, 1990. 65: p. 108-111.
[11] I. A. Merkulov, A.L.E., et al., Electron spin relaxation by nuclei in semiconductor quantum dots. Physical Review B, 2002. 65: p. 1-8.
[12] Shouheng Sun, S.A., et al., Polymer mediated self-assembly of magnetic nanoparticles. Journal of The American Chemical Society, 2001. 124: p. 2884-2885.
[13] Patrick S. Doyle, J.r.B., et al., Self-assembled magnetic matrices for DNA separation chips. Science, 2002. 295: p. 2237.
[14] RJ Hickey, A.H., et al., Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: From micelles to vesicles. Journal of The American Chemical Society, 2011. 133: p. 1519-1525.
[15] Bartosz A. Grzybowski, P.P.P., et al., Colloidal assembly directed by virtual magnetic moulds. Nature, 2013. 503: p. 99-103.
[16] C. Daniel Frisbie, L.F.R., et al., Functional group imaging by chemical force microscopy. Science, 1994. 265: p. 2071-2074.
[17] Stephan Menzer, A.J.P.W., et al., Self-assembly of functionalized catenanes bearing a reactive functional group on either one or both macrocyclic componentssfrom monomeric catenanes to polycatenanes. Macromolecules, 1998. 31: p. 295-307.
[18] Annette Rösler, G.W.M.V., et al., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 2012. 64: p. 207-279.
[19] Reuss, F., Notice sur un nouvel effect de l'électricité galvanique. Mémoire Soc. Sup. Imp. de Moscou, 1809: p. 1-4.
[20] Erik M. Freer, O.G., et al., High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotechnology, 2010. 5: p. 525-530.
[21] Woon-Hong Yeo, F.-L.C., et al., Hybrid nanofibril assembly using an alternating current electric field and capillary action. Journal of Nanoscience and Nanotechnology, 2009. 9: p. 7288-7292.
[22] Sunand Santhanagopalan, F.T., et al., High-voltage electrophoretic deposition for vertically aligned forests of one-dimensional nanoparticles. Langmuir, 2011. 27: p. 561-569.
[23] S. J. Papadakis, Z.G., et al., Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays. Applied Physics Letters, 2006. 88: p. 1-3.
[24] Xiaopeng Li, E.C., et al., Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing. Sensors and Actuators B, 2010. 148: p. 404-412.
[25] Sourobh Raychaudhuri, S.A.D., et al., Precise semiconductor nanowire placement through dielectrophoresis. Nano Letters, 2009. 9: p. 2260-2266.
[26] Canham, L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990. 57: p. 1046-1048.
[27] G. Kresse , J.H., Ab initio molecular-dynamics simulation of the liquid-metal — amorphous-semiconductor transition in germanium. Physical Review B, 1994. 49: p. 251-269.
[28] Adachi, S., GaAs, AlAs, and Al x Ga1x As: Material parameters for use in research and device applications. Journal of Applied Physics, 1985. 58: p. 1-29.
[29] Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996. 271: p. 933-937.
[30] Brus, L.E., Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. Journal of Chemical Physics, 1984. 80: p. 4403-4409.
[31] W. Van Roosbroeck, W.S., Photon-radiative recombination of electrons and holes in germanium. Physical Review, 1954. 94: p. 1558-1560.
[32] Fujishima, A., Electrochemical photolysis of water at a semiconduvtor electrode. Nature, 1972. 238: p. 37-38.
[33] K. M. Ho, C.T.C., et al., Photonic band gaps in three dimensions : New layer-by-layer periodic structures. Solid State Communications, 1994. 89: p. 413-416.
[34] T. Mizokawa, A.F., Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations. Physical Review B, 1996. 54: p. 5368-5379.
[35] Shinobu Ohya, P.N.H., et al., Quantum size effect and tunneling magnetoresistance in ferromagnetic-semiconductor quantum heterostructures. Physical Review B, 2007. 75: p. 1-6.
[36] B. Machet, M.I.V., Modification of Coulomb law and energy levels of the hydrogen atom in a superstrong magnetic field. Physical Review D, 2011. 83: p. 1-12.
[37] Heejun Yang, J.H., et al., Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 2012. 336: p. 1140-1143.
[38] Street, R.A., Doping and the fermi energy in amorphous silicon. Physical Review Letters, 1982. 49: p. 1187-1190.
[39] Vincent B. Engelkes, J.M.B., et al., Length-dependent transport in molecular junctions based on sams of alkanethiols and alkanedithiols: Effect of metal work function and applied bias on tunneling efficiency and contact resistance. Journal of The American Chemical Society 2004. 126: p. 14287-14296.
[40] L. L. Chang, L.E., et al., Resonant tunneling in semiconductor double barriers. Applied Physics Letters, 1974. 24: p. 593-595.
[41] Seok Cheon Baek, H.B., et al., Avalanche hot source method for separated extraction of parasitic source and drain resistances in single metal-oxide-semiconductor field effect transistors. Journal of Semiconductor Technology and Science, 2012. 12: p. 46-52.
[42] Reinhard B. M. Girisch, R.P.M., et al., Determination of Si-SiO2 interface recombination parameters using a gate-controlled point-junction diode under illumination IEEE Transactions on Electron Devices, 1988. 35: p. 203-222.
[43] W. E. Teo, S.R., Areviewonelectrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17: p. 89-106.
[44] A Theron, E.Z., et al., Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001. 12: p. 384-390.
[45] Ashkin, A., Optical trapping and manipulation of neutral particles using lasers. The National Academy of Sciences of The USA, 1997. 94: p. 4853-4860.
[46] X-B Wang, Y.H., et al., A unified theory of dielectrophoresis and travelling wave dielectrophoresis Journal of Physics D : Applied Physics, 1994. 27: p. 1571-1574.
[47] Peter Pulay, G.F., et al., Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. Journal of the American Chemical Society, 1979. 101: p. 2550-2560.
[48] Benjamin D. Smith, T.S.M., et al., Deterministic assembly of functional nanostructures using nonuniform electric fields. Annual Review of Physical Chemistry, 2012. 63: p. 241-263.
[49] C. Zhang, K.K., et al., Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid Nanofluid, 2009. 7: p. 633-645.
[50] T Seiyama, A.K., et al., A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962. 34: p. 1502-1503.
[51] Daihua Zhang, Z.L., et al., Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters, 2004. 4: p. 1919-1924.
[52] A. Kolmakov, D.O.K., et al., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letters, 2005. 5: p. 667-673.
[53] Qin Kuang, C.-S.L., et al., Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. The Journal of Physical Chemistry C, 2008. 112: p. 11539-11544.
[54] Zhongming Zeng, K.W., et al., The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology, 2009. 20: p. 1-4.
[55] L.H. Qian, K.W., et al., CO sensor based on Au-decorated SnO2 nanobelt. Materials Chemistry and Physics, 2006. 100: p. 82-84.
[56] Oleg Lupan, G.C., et al., Novel hydrogen gas sensor based on single ZnO nanorod. Microelectronic Engineering, 2008. 85: p. 2220-2225.
[57] Vivek Kumar, S.S., et al., Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sensors and Actuators B, 2009. 138: p. 587-590.
[58] J.D. Pradesa, R.J.-D., et al., Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B, 2009. 140: p. 337-341.
[59] Hossam Haick, G.P., et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology, 2009. 4: p. 669-673.
[60] T. Hibbard, A.J.K., et al., Breath ammonia levels in a normal human population study as determined by photoacoustic laser spectroscopy. Journal of Breath Research, 2011. 5: p. 1-18.
[61] M. Barker, M.H., et al., Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. European Respiratory Journal, 2006. 27: p. 929-936.
[62] Jie Zhao, M.M., et al., Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 413: p. 273-279.
[63] Lin, Z.X., Precise assembly of nanowires based on dielectrophoresis and its application in volatile organic compounds sensors. Master Thesis, 2012.
[64] Kyoung Jin Choi, H.W.J., One-dimensional oxide nanostructures as gas-sensing materials: Review and issues Sensors, 2010. 10: p. 4083-4099.
[65] Kazuhito Hashimoto, H.I., et al., TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, 2005. 44: p. 8269-8285.
[66] Sumit Paul, A.H., et al., Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires. Sensors and Actuators B 2012. 173: p. 120-126.
[67] Jason R. Cox, P.M.u., et al., Interrupted Energy Transfer: Highly Selective Detection of Cyclic Ketones in the Vapor Phase. Journal of the American Chemical Society, 2011. 133: p. 12910-12913.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *