帳號:guest(3.145.176.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂仲桓
作者(外文):Lu, Chung-Huan
論文名稱(中文):利用微流體晶片進行單一樹突狀細胞與癌細胞之電融合以生產高效率的癌症疫苗
論文名稱(外文):The on-chip high- efficient electrofusion of dendritic cells and tumor cells for efficient cancer vaccine generation
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):呂衍達
劉承賢
李岡遠
口試委員(外文):Yen-Ta Lu
Cheng-Hsien Liu
Kang-Yun Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033547
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:69
中文關鍵詞:細胞電融合微流體晶片細胞配對樹突細胞腫瘤細胞癌症疫苗
外文關鍵詞:Cell electrofusionMicrofludics chipCell trappingdendritic celltumor cellcancer treatment vaccine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於人們生活型態的轉變,癌症在國內已位於十大死因之首長達三十一年,如今每一百人就有二十八人死於癌症。惡性腫瘤是癌症的病原,其形成原因大多數為先天性突變、致癌基因的過度表現。癌細胞具有強大的增生能力及轉移轉化能力,且由於致癌基因的活化需長時間的突變,因此大多要長時間後才能被診斷出,所以癌症在早期被視為一種絕症。然而隨著醫療的進步,切除手術、化療等相繼被應用於治療惡性腫瘤。切除手術雖然能直接將腫瘤切除,但若癌細胞已轉移到其他部位,此方法只能暫緩病情;化療雖然能較有效的運用藥物治療癌症,但其副作用非常大,常令患者為之卻步。雖然早期已有上述應對癌症的方式,但它們都無法有效地根治,因此近期有許多種新興的療法相繼提出,如基因療法、抑制血管新生、抑制促癌細胞蛋白質及免疫療法等。
免疫療法是多種治療方式中最具潛力的選項。2010年4月29日FDA批准了Provenge癌症治療疫苗。Provenge用於晚期前列腺癌的治療,也代表了客製化醫療新時代的來臨,人們可以根據不同種類的癌症用不同的疫苗做治療。在眾多的癌症免疫療法策略中樹突狀細胞/腫瘤融合治療疫苗是一門最受矚目選項。樹突狀細胞是吞噬細胞的一種,其具有最強的抗原表現,當樹突狀細胞吞噬抗原後,會活化適應性免疫系統使身體產生防衛的效果並有效的治療癌症。因此,將樹突狀細胞與分裂快的癌細胞融合,即可大量製作疫苗。
但過去使用具二乙醇化學電融合或隨機性電融合製造出的樹突狀融合疫苗,雖可誘導毒殺性 T 淋巴球的活化,但其融合效率以及品質十分不穩定。因此在本論文希望透過生物微機電利用半導體製程,在細胞融合的製作技術上做改良。製作在微米尺度的結構下完成精確且大量的細胞配對之生物晶片,配合輔助電極,在10伏特以下的電壓進行細胞膜電穿孔,做高良率的細胞電融合克服並改善目前細胞融合技術的關鍵障礙,使其能簡易的完成大量、高良率的癌症免疫疫苗。
Because people lifestyle changed, cancer has been the top ten causes of death for 13 years. In every 100 people, 28 people were dead because of cancer. Cancer is caused by either the congenital mutations or the overexpression of oncogenes. It has a powerful ability to transform proliferative and transfer. Because the activation of oncogenes mutations takes months, the diagnosis need a long time. Therefore, the cancer was considered a terminal illness. However, with the medical improvement, the surgery and chemotherapy have been used to cure malignant tumors. Although surgery is easy to remove the tumor directly, this method can only postpone the disease if the cancer has moved to other organs. The chemotherapy can effective cure the cancer, but the patients might usually suffer from the significant side effects. However, both of these methods are unable to effectively cure the cancer. There are many kinds of therapies proposed in recent years, such as gene therapy, inhibition of angiogenesis, inhibition of pro-cancer protein and immunotherapy.
Immunotherapy has the potential among a variety of treatments. Cancer immunotherapy is a popular medical technology. On April 29, 2010, the FDA approved cancer treatment vaccine which was called Provenge. Provenge is used for the treatment of advanced prostate cancer. It represents the customization of new medical era. It can be used to make different vaccines according to different types of cancer. Among all strategies, cancer immunotherapy of dendritic cells / tumor fusion vaccine is a therapeutic option. Dendritic cells are phagocytes and have the strongest antigen expression. When dendritic cells swallow the antigen, they will activate the adaptive immune system. Therefore, the fusion of dendritic cells / tumor can make dendritic cells divide faster and mass-produce the vaccine.
In tradition, either polyethylenglycol or randomness method was used for electric fusion. The efficiency and the quality of the vaccine were both unstable. Through this research we develop a cell electrofusion lab chip which combined the rapid and precise cell pairing micro-structures and the high yield electrofusion micro-electrodes to improve the cell fusion techniques and overcome the key barriers. We wish to build and develop an automated, mass-produced and efficient dendritic cell / tumor fusion vaccine.
Table of contents
Abstract…………………………………………..I
中文摘要………………………………………..III
Table of contents ………..……………………..IV
List of figures………….………………...….…VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Cell fusion 2
1.3 Motivation and objective 2
1.4 Literature Survey 4
1.4.1 Cell fusion technology 4
1.4.1.1 Virus inducing cell fusion 5
1.4.1.2 Chemical inducing cell fusion 6
1.4.1.3 Cell electrofusion 6
1.4.2 The applications of microfludics chips for cell manipulation and pairing 7
1.4.2.1 Mechanical manipulation 8
1.4.2.2 Optical manipulation 11
1.4.2.3 Electrical manipulation 13
1.4.2.4 Hydrodynamical manipulation 14
1.4.3 Microfludics lab chip for cell electrofusion 17
Chapter 2 Device development 19
2.1 Background and review 19
2.1.1 Dielectrophoresis 19
2.1.1.1 Dielectric material and polarization 20
2.1.1.2 Operation principle of dielectrophoresis 22
2.1.2 Analysis of flow resistance in microfluidics 24
2.1.3 Membrane voltage 27
2.2 Design concept 29
2.2.1 Design of bi-directional flow rapid heterogeneous cell pairing lab chip 32
2.2.2 Design of multi-branched channels 33
2.2.2.1 Simulation of multi-branched channels 34
2.2.3 Design of microstructure and microelectrode for rapid cell trapping 35
2.2.3.1 Operation principle of rapid cell trapping channels 36
2.2.3.3 Numerical simulation of rapid heterogeneous cell pairing channels 41
2.2.4 Design of cell electrofusion electrodes 43
Chapter 3 Fabrication of microchip 44
3.1 Microfabrication process flow of microchip 44
3.2 Fabrication results 46
3.2.1 Microchannel 46
3.2.3 Bonding of microchannels and electrodes 47
Chapter 4 Experimental setup and methods 49
4.1 polystyrene beads 49
4.2 Cell materials 49
4.3 Cell preparation for cell electrofusion 51
4.4 Cleaning and surface modification of microchannel 51
4.5 Experimental setup 52
4.6 The parameters of electric signal 53
Chapter 5 Experiment results 54
5.1 Preliminary tests 54
5.1.1 Rapid microparticles trapping with polystyrene beads 54
5.1.2 Rapid cell trapping 55
5.1.3 Electric signal 56
5.2 Cell electrofusion 57
5.2.4 Heterogeneous cell pairing 57
5.2.5 Heterogeneous cell pairing efficiency 59
5.2.6 Cell electrofusion 61
5.2.6.1 Cell electrofusion results 61
5.2.6.2 Cell electrofusion efficiency 64
Chapter 6 Conclusion and future work 66
Reference 67
[1] http://inflammablog5.blogspot.tw/2011/11/dendritic-cell-cancer-vaccines.html.
[2] N. Chronis and L. P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," Journal of Microelectromechanical Systems, vol. 14, pp. 857-863, Aug 2005.
[3] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a rare cell fractionation device: Application for cancer detection," Ieee Transactions on Nanobioscience, vol. 3, pp. 251-256, Dec 2004.
[4] M. S. Yang, C. W. Li, and J. Yang, "Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfludics device," Analytical Chemistry, vol. 74, pp. 3991-4001, Aug 2002.
[5] A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick, and R. Langer, "Molded polyethylene glycol microstructures for capturing cells within microfludics channels," Lab on a Chip, vol. 4, pp. 425-430, 2004.
[6] C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, "PDMS-based microfludics device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters," Analyst, vol. 128, pp. 1137-1142, 2003.
[7] J. Moorthy and D. J. Beebe, "In situ fabricated porous filters for microsystems," Lab on a Chip, vol. 3, pp. 62-66, 2003.
[8] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, pp. 987-990, May 2004.
[9] L. Zhu, Q. Zhang, H. H. Feng, S. Ang, F. S. Chauc, and W. T. Liu, "Filter-based microfludics device as a platform for immunofluorescent assay of microbial cells," Lab on a Chip, vol. 4, pp. 337-341, 2004.
[10] A. Revzin, R. G. Tompkins, and M. Toner, "Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass," Langmuir, vol. 19, pp. 9855-9862, Nov 2003.
[11] H. Tani, K. Maehana, and T. Kamidate, "Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfludics network," Analytical Chemistry, vol. 76, pp. 6693-6697, Nov 2004.
[12] C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, pp. 1-23, Feb 2006.
[13] J. Sinclair, J. Pihl, J. Olofsson, M. Karlsson, K. Jardemark, D. T. Chiu, and O. Orwar, "A cell-based bar code reader for high-throughput screening of ion channel-ligand interactions," Analytical Chemistry, vol. 74, pp. 6133-6138, Dec 2002.
[14] M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005.
[15] A. Ashkin and J. M. Dziedzic, "OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA," Science, vol. 235, pp. 1517-1520, Mar 1987.
[16] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfludics systems," Analytica Chimica Acta, vol. 649, pp. 141-157, Sep 2009.
[17] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 2005.
[18] H. A. Pohl, "THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS," Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
[19] H. B. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B-Chemical, vol. 86, pp. 215-221, Sep 2002.
[20] C. F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, "Electrodeless dielectrophoresis of single- and double-stranded DNA," Biophysical Journal, vol. 83, pp. 2170-2179, Oct 2002.
[21] H. Sedgwick, F. Caron, P. B. Monaghan, W. Kolch, and J. M. Cooper, "Lab-on-a-chip technologies for proteomic analysis from isolated cells," Journal of the Royal Society Interface, vol. 5, pp. S123-S130, Oct 2008.
[22] D. Di Carlo and L. P. Lee, "Dynamic single-cell analysis for quantitative biology," Analytical Chemistry, vol. 78, pp. 7918-7925, Dec 2006.
[23] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfludics system for dynamic microarray applications," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 1146-1151, Jan 2007.
[24] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfludics control of cell pairing and fusion," Nature Methods, vol. 6, pp. 147-152, Feb 2009.
[25] T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, "A dynamic microarray device for paired bead-based analysis," Lab on a Chip, vol. 10, pp. 2443-2448, 2010.
[26] J. Wang and C. Lu, "Microfludics cell fusion under continuous direct current voltage," Applied Physics Letters, vol. 89, Dec 2006.
[27] B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, H. Oana, and M. Washizu, "High-yield electrofusion of biological cells based on field tailoring by microfabricated structures," Iet Nanobiotechnology, vol. 2, pp. 93-99, Dec 2008.
[28] M. Gel, S. Suzuki, Y. Kimura, O. Kurosawa, B. Techaumnat, H. Oana, and M. Washizu, "Microorifice-Based High-Yield Cell Fusion on Microfludics Chip: Electrofusion of Selected Pairs and Fusant Viability," Ieee Transactions on Nanobioscience, vol. 8, pp. 300-305, Dec 2009.
[29] Y. Cao, J. Yang, Z. Q. Yin, H. Y. Luo, M. Yang, N. Hu, D. Q. Huo, C. J. Hou, Z. Z. Jiang, R. Q. Zhang, R. Xu, and X. L. Zheng, "Study of high-throughput cell electrofusion in a microelectrode-array chip," Microfluidics and Nanofluidics, vol. 5, pp. 669-675, Nov 2008.
[30] N. Hu, J. Yang, X. L. Zheng, Z. Q. Yin, H. W. Xu, X. G. Zhang, Y. Cao, J. Yang, B. Xia, R. Xu, J. W. Yan, and F. Jiang, "Polyimide Membrane Based Flexible Cell-electrofusion Chip," Chinese Journal of Analytical Chemistry, vol. 37, pp. 1247-1250, Aug 2009.
[31] Y. Cao, J. Yang, Z. Q. Yin, W. S. Hou, X. L. Zheng, N. Hu, R. Xu, and R. Q. Zhang, "Electric field simulation of high-throughput cell electrofusion chip," Chinese Journal of Analytical Chemistry, vol. 36, pp. 593-598, May 2008.
[32] F. M. White, "Viscous Fluid Flow," McGraw-Hill Companies, Inc, Boston, 2006.
[33] C. B. B. Weinberg, E, "A blood vessel model constructed from collagen and cultured vascular cells," Science, vol. 231, pp. 397-400, 1986.
[34] J. H. Chung, Y. J. Kim, and E. Yoon, "Highly-efficient single-cell capture in microfludics array chips using differential hydrodynamic guiding structures," Applied Physics Letters, vol. 98, Mar 2011.
[35] http://www.atcc.org/Attachments/1753.jpg.
[36] http://www.atcc.org/Attachments/2001.jpg.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *