|
[1] http://inflammablog5.blogspot.tw/2011/11/dendritic-cell-cancer-vaccines.html. [2] N. Chronis and L. P. Lee, "Electrothermally activated SU-8 microgripper for single cell manipulation in solution," Journal of Microelectromechanical Systems, vol. 14, pp. 857-863, Aug 2005. [3] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a rare cell fractionation device: Application for cancer detection," Ieee Transactions on Nanobioscience, vol. 3, pp. 251-256, Dec 2004. [4] M. S. Yang, C. W. Li, and J. Yang, "Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfludics device," Analytical Chemistry, vol. 74, pp. 3991-4001, Aug 2002. [5] A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick, and R. Langer, "Molded polyethylene glycol microstructures for capturing cells within microfludics channels," Lab on a Chip, vol. 4, pp. 425-430, 2004. [6] C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, "PDMS-based microfludics device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters," Analyst, vol. 128, pp. 1137-1142, 2003. [7] J. Moorthy and D. J. Beebe, "In situ fabricated porous filters for microsystems," Lab on a Chip, vol. 3, pp. 62-66, 2003. [8] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, pp. 987-990, May 2004. [9] L. Zhu, Q. Zhang, H. H. Feng, S. Ang, F. S. Chauc, and W. T. Liu, "Filter-based microfludics device as a platform for immunofluorescent assay of microbial cells," Lab on a Chip, vol. 4, pp. 337-341, 2004. [10] A. Revzin, R. G. Tompkins, and M. Toner, "Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass," Langmuir, vol. 19, pp. 9855-9862, Nov 2003. [11] H. Tani, K. Maehana, and T. Kamidate, "Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfludics network," Analytical Chemistry, vol. 76, pp. 6693-6697, Nov 2004. [12] C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, "Microfluidics technology for manipulation and analysis of biological cells," Analytica Chimica Acta, vol. 560, pp. 1-23, Feb 2006. [13] J. Sinclair, J. Pihl, J. Olofsson, M. Karlsson, K. Jardemark, D. T. Chiu, and O. Orwar, "A cell-based bar code reader for high-throughput screening of ion channel-ligand interactions," Analytical Chemistry, vol. 74, pp. 6133-6138, Dec 2002. [14] M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005. [15] A. Ashkin and J. M. Dziedzic, "OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA," Science, vol. 235, pp. 1517-1520, Mar 1987. [16] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfludics systems," Analytica Chimica Acta, vol. 649, pp. 141-157, Sep 2009. [17] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 2005. [18] H. A. Pohl, "THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS," Journal of Applied Physics, vol. 22, pp. 869-871, 1951. [19] H. B. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B-Chemical, vol. 86, pp. 215-221, Sep 2002. [20] C. F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, "Electrodeless dielectrophoresis of single- and double-stranded DNA," Biophysical Journal, vol. 83, pp. 2170-2179, Oct 2002. [21] H. Sedgwick, F. Caron, P. B. Monaghan, W. Kolch, and J. M. Cooper, "Lab-on-a-chip technologies for proteomic analysis from isolated cells," Journal of the Royal Society Interface, vol. 5, pp. S123-S130, Oct 2008. [22] D. Di Carlo and L. P. Lee, "Dynamic single-cell analysis for quantitative biology," Analytical Chemistry, vol. 78, pp. 7918-7925, Dec 2006. [23] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfludics system for dynamic microarray applications," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 1146-1151, Jan 2007. [24] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfludics control of cell pairing and fusion," Nature Methods, vol. 6, pp. 147-152, Feb 2009. [25] T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, "A dynamic microarray device for paired bead-based analysis," Lab on a Chip, vol. 10, pp. 2443-2448, 2010. [26] J. Wang and C. Lu, "Microfludics cell fusion under continuous direct current voltage," Applied Physics Letters, vol. 89, Dec 2006. [27] B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, H. Oana, and M. Washizu, "High-yield electrofusion of biological cells based on field tailoring by microfabricated structures," Iet Nanobiotechnology, vol. 2, pp. 93-99, Dec 2008. [28] M. Gel, S. Suzuki, Y. Kimura, O. Kurosawa, B. Techaumnat, H. Oana, and M. Washizu, "Microorifice-Based High-Yield Cell Fusion on Microfludics Chip: Electrofusion of Selected Pairs and Fusant Viability," Ieee Transactions on Nanobioscience, vol. 8, pp. 300-305, Dec 2009. [29] Y. Cao, J. Yang, Z. Q. Yin, H. Y. Luo, M. Yang, N. Hu, D. Q. Huo, C. J. Hou, Z. Z. Jiang, R. Q. Zhang, R. Xu, and X. L. Zheng, "Study of high-throughput cell electrofusion in a microelectrode-array chip," Microfluidics and Nanofluidics, vol. 5, pp. 669-675, Nov 2008. [30] N. Hu, J. Yang, X. L. Zheng, Z. Q. Yin, H. W. Xu, X. G. Zhang, Y. Cao, J. Yang, B. Xia, R. Xu, J. W. Yan, and F. Jiang, "Polyimide Membrane Based Flexible Cell-electrofusion Chip," Chinese Journal of Analytical Chemistry, vol. 37, pp. 1247-1250, Aug 2009. [31] Y. Cao, J. Yang, Z. Q. Yin, W. S. Hou, X. L. Zheng, N. Hu, R. Xu, and R. Q. Zhang, "Electric field simulation of high-throughput cell electrofusion chip," Chinese Journal of Analytical Chemistry, vol. 36, pp. 593-598, May 2008. [32] F. M. White, "Viscous Fluid Flow," McGraw-Hill Companies, Inc, Boston, 2006. [33] C. B. B. Weinberg, E, "A blood vessel model constructed from collagen and cultured vascular cells," Science, vol. 231, pp. 397-400, 1986. [34] J. H. Chung, Y. J. Kim, and E. Yoon, "Highly-efficient single-cell capture in microfludics array chips using differential hydrodynamic guiding structures," Applied Physics Letters, vol. 98, Mar 2011. [35] http://www.atcc.org/Attachments/1753.jpg. [36] http://www.atcc.org/Attachments/2001.jpg.
|