帳號:guest(3.14.129.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭家豪
論文名稱(中文):聲源定位與基於反摺積理論之分離
論文名稱(外文):Acoustic source localization and deconvolution-based separation
指導教授(中文):白明憲
口試委員(中文):洪健中
李昇憲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033540
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:聲源定位聲源分離
相關次數:
  • 推薦推薦:0
  • 點閱點閱:550
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
本論文討論了在聲場分析中兩個重要的議題:聲源定位及分離。演算法基於以平面波分解的基礎來實現定位與分離聲源訊號的目的。在定位的階段,以最小變異無失真響應法(Minimum Variance Distortionless Response, MVDR)與多重信號分類法(multiple signal classification, MUSIC)來測定平面波的方向。對於寬頻的訊號的應用上,同調(coherent)與非同調(incoherent)的技術被應用在定位處理上。在聲源分離階段,使用過定與未定設置的兩個方法被使用。過定的方法,使用Tikhonov正規化來實現聲源訊號的重建;而在未定的狀況下,轉向(steering)矩陣以定位出之方位再做增廣。因此,分離問題可以壓縮感知(compressive sensing, CS)的問題來表示且可以有效地以凸集合最佳化來求解。數值模擬與實驗以一24顆麥克風所組成的環形陣列來實現。客觀的語音品質感知試驗以及主觀的聆聽測試比較原始混雜訊號與分離出之訊號在語音品質上的提升。
This thesis examines two fundamental issues in sound field analysis: acoustic sources localization and separation. Algorithms are developed to locate and separate acoustic signals on the basis of plane-wave decomposition. In the localization stage, directions of plane waves are determined using either minimum variance distortionless response (MVDR) method or multiple signal classification (MUSIC) method. For broadband scenarios, coherent and incoherent techniques are utilized in the localization procedure. In the separation stage, two approaches with overdetermined and underdetermined settings can be employed. In the overdetermined approach, Tikhonov regularization (TIKR) is utilized to recover the source signals. In the underdetermined approach, the steering matrix is augmented by including the directions that have been determined in the localization stage. Hence, the separation problem is formulated into a compressive sensing (CS) problem which can be effectively solved by using convex (CVX) optimization. Simulation and experiments are conducted for a 24-element circular array. Sources Objective tests using perceptual evaluation of speech quality (PESQ) tests and subjective listening tests demonstrate that the proposed methods yield speech signals with well separated and improved quality, as compared to the mixed signals.
摘 要 i
ABSTRACT ii
誌 謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 INTRODUCTION 1
Chapter 2 ARRAY SIGNAL PROCESSING 3
2.1 Farfield array model 3
2.2 Choice of farfield array parameters 4
2.3 Spatial correlation matrix 5
Chapter 3 DOA ESTIMATION ALGORITHMS 7
3.1 MVDR algorithm 7
3.2 MUSIC algorithm 8
3.3 Wideband coherent processing 9
3.4 Neyman-Pearson detector 10
Chapter 4 ACOUSTIC SOURCE SEPARATION 12
4.1 Beamforming method 12
4.1.1 Beamformer design 12
4.1.2 Superdirective array (SDA) beamformer 13
4.2 Deconvolution-based method 14
4.2.1 TIKR method 14
4.2.2 CS method 15
4.3 Strategies of deconvolution-based source separation 16
Chapter 5 PERFORMANCE EVALUATION 23
5.1 Numerical simulation 23
5.2 Experimental investigation: anechoic room 25
5.3 Experimental investigation: conference room 26
Chapter 6 CONCLUSIONS 52
REFERENCES 53
[1] Y. H. Kim, and J. W. Choi, Sound Visualization and Manipulation, Wiley, Singapore, Chap. 4 (2013).
[2] E T. Roig, and F. Jacobsen, “Deconvolution for the localization of sound sources using a circular microphone array,” J. Acoust. Soc. Am. 134(3), 2078-2089 (2013).
[3] K. Nakadi, H. Nakajima, G. Ince, and Y. Haseawa, “Sound source separation and automatic speech recognition for moving sources,” The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taiwan (2010).
[4] T. E. Tuncer and B. Friedlander, Classical and Modern Direction-of-Arrival Estimation, Academic Press, Chap. 4-6 (2009 ).
[5] J. Capon, “High-resolution frequency-wave number spectrum analysis,” Proceedings of the IEEE. 57, 1408-1418 (1969).
[6] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transaction on Antennas and Propagation. 34(3), 276-280 (1986).
[7] R. Roy, A. Paulraj, and T. Kailath, “Direction-of-Arrival Estimation by Subspace Rotation Methods – ESPRIT,” IEEE International Conference on ICASSP. 11 , 2495-2498, Tokyo (1986).
[8] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing (Part IV), Wiley-Interscience, p.984-1018 (2002).
[9] K. Kokkinakis and P. C. Loizou, “Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients,” J. Acoust. Soc. Am. 123, 2379-2390 (2008).
[10] S. F. Wu and N. Zhu, “Blind extraction and localization of sound sources using point sources based approaches,” J. Acoust. Soc. Am. 132, 904-917 (2012).
[11] W. J. Zeng, X. Jiang, and H. C. So, “Sparse-representation algorithms for blind estimation of acoustic-multipath channels,” J. Acoust. Soc. Am. 133, 2191-2197 (2013).
[12] J. V. Stone, Independent Component Analysis: A Tutorial Introduction, (MIT, Cambridge (2004).
[13] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis, Wiley (2001).
[14] J. C. Brown and P. Smaragdis, “Independent component analysis for automatic note extraction from musical trills,” J. Acoust. Soc. Am. 115, 2295-2306 (2004).
[15] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine, 25(2), 21-30 (2008).
[16] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, 59(8), 1207-1223 (2006).
[17] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction form highly incomplete frequency information,” IEEE Transactions on Information Theory, 52(2), 489-509 (2006).
[18] G. F. Edelmann and C.F. Gaumond, “Beamforming using compressive sensing,” J. Acoust. Soc. Am. 130, EL232-237 (2011).
[19] M. R. Bai, J. G. Ih, and J. Benesty, Acoustic Array Systems: Theory, Implementation, and Application, Wiley Chap. 3-4. (2013).
[20] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,” International Telecommunication Union, Geneva, Switzerland, 21pages (2001).
[21] ITU-T Recommendation P.862.2, “Wideband extension to Recommendation P.862 for the assessment of wideband telephone networks and speech codecs,” International Telecommunication Union, Geneva, Switzerland, 4 pages (2007).
[22] A. J. Klockars, G. R. Hancock and M. J. McAweeney, “Power of Unweighted and Weighted Versions of Simultaneous and Sequential Multiple-Comparison Procedures,” Psychological Bulletin 118, 300-307 (1995).
[23] M. Kutner, C. Nachtsheim and J. Neter, Applied Linear Regression Models, McGraw-Hill/Irwin, New York, 4 ed., 701 pages (2004).
[24] W. Liu and S. Weiss, Wideband Beamforming: Concepts and Techniques, Wiley, Chap. 6 (2010).
[25] H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources,” IEEE Transactions on Acoustics, Speech and Signal Processing, 33(4), 823-831 (1985).
[26] T. D. Abhayapala and H. Bhatta, “Coherent broadband source localization by modal space processing,” 10th International Conference on Telecommunications, 2, 1617-1623 (2003).
[27] H. Sun, S. Yan, and U. P. Svensson, “Space domain optimal beamforming for spherical microphone arrays,” IEEE International Conference on Acoustics Speech and Signal Processing, 117-120 (2010).
[28] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall, Chap. 3 (1998).
[29] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, Athena Scientific, Chap. 8 (2008).
[30] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, New York, Chap. 1-7 (2004).
[31] M. Grant, and S. Boyd, cvx, Version 1.21 MATLAB software for disciplined convex programming available at http://cvxr.com/cvx, (last viewed June 14 ,2013).
[31] ITU-R Recommendation BS.1534-1, “Method for the subjective assessment of intermediate quality levels of coding systems,” International Telecommunication Union, Geneva, Switzerland (2003).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *