帳號:guest(52.15.70.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):董震國
作者(外文):Tung, Chen-Kuo
論文名稱(中文):仿肝小葉體外培養晶片結合介電泳排列技術和生物相容水膠材料:GelMA
論文名稱(外文):In Vitro Lobule Mimic Microfluidic Device Integrated with Dielectrophoresis Patterning and Gelatin Methacrylate Hydrogels
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):盧向成
徐琅
口試委員(外文):Lu, Shiang-Cheng
Hsu, Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033537
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:74
中文關鍵詞:組織工程肝小葉生物相容水膠介電泳
外文關鍵詞:liver tissuegelatin methacrylate hydrogelslobule-mimiccell patterning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:228
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人類在生活中可能因為意外、個人習慣、先天性疾病等眾多因素,導致身體中的器官受損,造成生活不便,甚至有可能危害生命。在1987年時,美國多位學者及研究人員提出了組織工程學的概念,試圖結合生物、材料、工程等多樣領域的知識,在相輔相成之下,透過體外培養或是建構的方式,試圖再造以及修復器官或是組織。除此之外,組織工程提供研究人員能夠更加瞭解組織細胞在體內的生長情形,透過取出特定細胞或組織,將其培養在體外的生物晶片當中,並且幫助研究人員從事藥物開發等相關研究。
本研究目的在於將肝小葉組織重現於體外晶片當中,在過去本實驗室的研究當中,已經可以將肝臟以及血管內皮細胞成功地做共培養,但隨著培養時間增加,細胞快速增生,細胞同時遷移位置,有些細胞增生遷移到鄰近細胞之上,原先細胞與異種細胞接觸劇烈改變,本研究藉由生物相容水膠材料的整合,提供細胞的立體支撐,同時試圖維持原始藉由介電泳力定義排列出的細胞平面空間分布。
透過本實驗室的技術,利用介電泳現象,將3T3細胞和C3A細胞排列抓取,達到仿肝小葉組織的排列,接著本研究使用生物相容水膠材料:gelatin methacrylate hydrogel (GelMA),將此光固化材料覆蓋在細胞之上,藉此維持細胞之圖形排列。
在實驗的結果當中,可以看到細胞經過GelMA水膠的覆蓋之後,細胞明顯能夠維持其排列型態;為了瞭解細胞被GelMA水膠覆蓋之後其生長情況,因此本研究也探討了細胞群被覆蓋在不同濃度GelMA水膠之下的生存率,數據顯示隨著提升GelMA濃度,細胞生存率會從95%下降至78%;在細胞活性的檢測實驗當中,尿素(urea)的分泌量,會因為GelMA濃度上升而有所下降,其主要因素應和細胞生存率有關。
This thesis reports a lobule-mimicking chip, which was dedicated to reconstruct lobule tissue in vitro. In order to maintain the pattern of heterogeneous cells, the biocompatible material, Gelatin methacrylate (GelMA) hydrogels, was used. GelMA is a photocrosslinkable material which could be photocrosslinked under UV light. The chip design was divided into two parts: the first part includes the GelMA concentration generator, and the second part is composed of the cell patterning and the GelMA covering chamber. The GelMA concentration generator could generate three kinds of GelMA concentration: 5%, 10%, and 15%. In the cell culture chamber, 17 sets of hexagonal electrodes were located inside of it. Each set of hexagonal electrodes was used to attract and pattern 3T3 cells and C3A cells. After two kinds of cells were patterned and attracted to the defined location, different concentration of GelMA was loaded into the cell culture chamber. In order to understand the influence between different concentration of GelMA and cells, the tests of viability and urea had been performed. The viability of cells under 5% of GelMA can maintain 95% after72-hrs culture. By increasing the concentration of GelMA, the cell viability would decrease down to 78%. The urea assay showed that cells covered by GelMA can still maintain their activity. The results also showed that patterned cells covered by GelMA modules can maintain their pattern after 3-days culture. Compared with the patterned cells without covering GelMA modules, 3T3 cells grow faster than C3A cells and migrate above C3A cells.
目錄
Abstract………………………………………….II
中文摘要………………………………………..III
致謝……………………………………………..IV
目錄………………………………………………V
圖目錄…………………………………...……...IX
第一章 緒論 1
1.1 前言 1
1.2 微機電系統和生物晶片 2
1.3 組織工程 3
1.4 研究背景與動機 4
1.5 文獻回顧 5
1.5.1肝組織培養 6
1.5.1.1 電場排列法 6
1.5.1.2 微結構抓取法 8
1.5.1.3 微流體擴散法 12
1.5.8.4 水膠包埋法 15
第二章 晶片設計與原理 19
2.1 設計基礎與理論 19
2.1.1 肝的構造 19
2.1.2 肝小葉 20
2.1.3介電泳力 21
2.1.3.1介電材質之極化機制 22
2.1.3.2介電泳力作用機制 24
2.1.4 微流體流阻分析 28
2.1.5光固化水膠材料GelMA 29
2.2 設計概念 31
2.2.1細胞排列 32
2.2.2濃度產生器 36
第三章 晶片製程 42
3.1製作流程 42
3.1.1 細胞排列及GelMA固化之微流道製程 42
3.1.2 細胞排列之電極製程 44
3.1.3 整體晶片製程 46
3.2 製程結果 47
3.3 製程問題與討論 48
3.3.1 PDMS和電極片黏合 48
第四章 實驗材料與設備 49
4.1實驗材料 49
4.1.1 小鼠纖維母細胞和肝癌細胞培養 49
4.1.2 DEP Buffer 50
4.1.3 GelMA 51
4.1.4細胞死活檢測 52
4.1.5尿素(urea)檢測 52
4.2 實驗和儀器架設 52
4.2.1 C3A細胞排列抓取 53
4.2.2 3T3細胞排列抓取 53
4.2.3 GelMA曝光固化 53
第五章 實驗結果 55
5.1 GelMA固化成形測試 55
5.2 GleMA濃度混和產生器測試數據 60
5.3細胞排列抓取及GelMA覆蓋 61
5.3.1 C3A細胞抓取排列 61
5.3.2 3T3細胞排列抓取 62
5.3.3 GelMA水膠覆蓋 64
5.4細胞存活率 65
5.5 GelMA覆蓋下細胞之生長情況 67
5.6 Urea檢測 69
第六章 結論 71
參考文獻 73
1. Gaver, D.P. and S.M. Kute, A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophysical Journal, 1998. 75(2): p. 721-733.
2. Ho, C.T., R.Z. Lin, W.Y. Chang, H.Y. Chang, and C.H. Liu, Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 2006. 6(6): p. 724-734.
3. Lee, P.J., P.J. Hung, and L.P. Lee, An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnology and Bioengineering, 2007. 97(5): p. 1340-1346.
4. Bruzewicz, D.A., A.P. McGuigan, and G.M. Whitesides, Fabrication of a modular tissue construct in a microfluidic chip. Lab on a Chip, 2008. 8(5): p. 663-671.
5. Toh, Y.C., C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, and H.R. Yu, A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on a Chip, 2007. 7(3): p. 302-309.
6. Toh, Y.C., T.C. Lim, D. Tai, G.F. Xiao, D. van Noort, and H.R. Yu, A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip, 2009. 9(14): p. 2026-2035.
7. Zhang, C., Z.Q. Zhao, N.A.A. Rahim, D. van Noort, and H. Yu, Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab on a Chip, 2009. 9(22): p. 3185-3192.
8. Goral, V.N., Y.C. Hsieh, O.N. Petzold, J.S. Clark, P.K. Yuen, and R.A. Faris, Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab on a Chip, 2010. 10(24): p. 3380-3386.
9. Tsang, V.L., A.A. Chen, L.M. Cho, K.D. Jadin, R.L. Sah, S. DeLong, J.L. West, and S.N. Bhatia, Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. Faseb Journal, 2007. 21(3): p. 790-801.
10. Underhill, G.H., A.A. Chen, D.R. Albrecht, and S.N. Bhatia, Assessment of hepatocellular function within PEG hydrogels. Biomaterials, 2007. 28(2): p. 256-270.
11. Chan, V., P. Zorlutuna, J.H. Jeong, H. Kong, and R. Bashir, Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab on a Chip, 2010. 10(16): p. 2062-2070.
12. WebMD, L., Picture of the Liver. http://www.webmd.com/digestive-disorders/picture-of-the-liver, 2009.
13. jhmicall, Figure 6. A, Liver lobule; B, histological image with magnified view of the portal tract.
14. Griffith, L.G. and M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 2006. 7(3): p. 211-224.
15. Pohl, H.A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
16. Van den Bulcke, A.I., B. Bogdanov, N. De Rooze, E.H. Schacht, M. Cornelissen, and H. Berghmans, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
17. Nichol, J.W., S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, and A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
18. Toh, A.G.G., Z.P. Wang, C. Yang, and N.T. Nguyen, Engineering microfluidic concentration gradient generators for biological applications. Microfluidics and Nanofluidics, 2014. 16(1-2): p. 1-18.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *