帳號:guest(3.137.174.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林懿伶
作者(外文):Lin, Yi-Ling
論文名稱(中文):一體式啟動馬達發電機於發電模式下基於電壓相角調控之電壓控制策略
論文名稱(外文):Voltage Control Strategy for an Integrated Starter Generator in Generation Mode Based on Voltage Phase Angle Control
指導教授(中文):葉廷仁
指導教授(外文):Yeh, Ting-Jen
口試委員(中文):顏炳郎
陳榮順
葉廷仁
簡士翔
口試委員(外文):Ping-Lang Yen
Rong-Shun Chen
Ting-Jen Yeh
Shih-Hsiang Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033532
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:一體式啟動馬達發電機永磁同步馬達電壓角度控制直流鏈電壓控制狀態回授控制LQR控制器
外文關鍵詞:Integrated Starter GeneratorPermanent-Magnet Synchronous MachineDC-link voltage controlVoltage phase angle controlState feedback control with integral actionLinear Quadratic Regular
相關次數:
  • 推薦推薦:0
  • 點閱點閱:815
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
中文摘要
傳統的引擎機車大多配備直流有刷啟動馬達和發電機各一,分別作為發動引擎以及電池充電之用,而近年來開始出現一體式啟動馬達發電機(Integrated starter generator)於車輛上的應用,一體式啟動馬達發電機是結合驅動與發電用途的一個交流電機,不僅減輕重量、增加效率、也有助於實現怠速熄火系統(idling stop system),可減少燃油損耗和廢氣排放。因此,為了將此技術應用至目前機車常用之14伏特鉛酸電池系統上,本論文採用永磁式同步馬達作為一體式啟動馬達發電機、以及一個雙向變流器作為電力電子元件,主要研究系統在發電模式下,以調控電壓相角的方式維持直流側充電電壓恆定之控制策略。為了能夠在不同引擎轉速下,以及不同直流鏈負載狀況下維持恆定的充電電壓,本論文推導此系統的非線性數學模型,瞭解系統參數的影響,並採用加上積分器的狀態回授控制架構,利用線性化所得之模型設計LQR控制器,在Matlab/Simulink中進行系統模擬。最後,將設計之控制器透過微控制器實現,在動力實驗平台上的實驗結果驗證了此數學模型的正確性以及電壓控制策略的可行性。

關鍵詞: 一體式啟動馬達發電機、永磁同步馬達、電壓角度控制、直流鏈電壓控制、狀態回授控制、LQR控制器。
Abstract
Recent developments in hybrid automotive industry have led to an increasing interest in the integrated starter generator (ISG) which can perform both engine cranking and battery charging in a single machine. In this study, a permanent magnet synchronous machine (PMSM)-based ISG and a bidirectional converter are applied to a scooter. The analysis is especially focused on regulating the output DC voltage in generation mode via controlling the phase angle. For constant-voltage battery charging, the goal is to maintain the DC-link voltage under various engine speed and different loading conditions. The theoretical approach includes derivation of the system model for revealing the influence of system parameters. Besides, a control scheme using full-state feedback control with integral action is adopted to regulate the output voltage. Particularly, the linear quadratic regulator (LQR) methodology is applied to the linearized system model to acquire the control gains. Both simulations in Matlab/Simulink and experiments using a laboratory platform verify the validity and feasibility of the control strategy for the ISG application.

Keywords: Integrated Starter Generator, Permanent-Magnet Synchronous Machine, DC-link voltage control, Voltage phase angle control, Linear Quadratic Regulator
Contents
List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Background 1
1.2 Literature Review 6
1.3 Scope of the Thesis 8
2 System Analysis 9
2.1 System Description 9
2.2 System Model 11
2.3 Linear System Model 19
3 Controller Design 22
3.1 State Feedback Control with Integral Action (SFCIA) 22
3.2 Linear Quadratic Regular (LQR) controller 23
3.3 Modeling in Matlab/Simulink 24
3.3.1 Theoretical Nonlinear System Model 24
3.3.2 SimPowerSystems Model 26
4 Simulation Analysis 28
4.1 Verification of the Simulation Models 28
4.2 Open-Loop Simulations: Influence of System Parameters 31
4.3 Open-Loop Simulation: Power Analysis 33
4.4 Closed-Loop Simulation under Current Load Change 40
4.5 Comparison of LQR and PI Controllers by Simulation 41
5 Experimental Results 44
5.1 Experimental Setup 44
5.2 Open-Loop Control Experiments 46
5.3 Closed-Loop Experiment under Load Variation 46
5.4 Closed-Loop Experiments under Speed Variations 48
5.5 Comparison with a PI controller by Experiment 49
6 Conclusions and Future Works 51
6.1 Conclusions 51
6.2 Future Works 52
Appendix 53
Bibliography 55
1. Cai, W. Comparison and review of electric machines for integrated starter alternator applications. in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004.
2. Takeshi Yanagisawa, T.Y., Katsuhiro Utsugi and Toshiya Nagatsuyu Honda R&D Co Ltd, Development of Idling Stop System for 125 cm3 Scooters with Fuel Injection, 2010.
3. Majed, A.M., T.C. Green, and B.W. Williams. Dynamic properties of a step-down sinusoidal current AC/DC converter under state-feedback control. in Applied Power Electronics Conference and Exposition, 1993. APEC '93. Conference Proceedings 1993., Eighth Annual. 1993.
4. Rodriguez, J.R., et al., PWM regenerative rectifiers: state of the art. Industrial Electronics, IEEE Transactions on, 2005. 52(1): p. 5-22.
5. Kazmierkowski, M.P., et al., Control in Power Electronics: Selected Problems. 2002: Elsevier Science.
6. Chau, K., et al., Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. Industrial Electronics, IEEE Transactions on, 2008. 55(6): p. 2246-2257.
7. Chunhua, L. , et al., A Permanent-Magnet Hybrid Brushless Integrated Starter–Generator for Hybrid Electric Vehicles. Industrial Electronics, IEEE Transactions on, 2010. 57(12): p. 4055-4064.
8. Liu, J., J. Hu, and L. Xu. Design and control of a kilo-amp DC/AC inverter for integrated starter-generator (ISG) applications. in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004. IEEE.
9. Lucache, D.D., et al. Indirect field oriented control of an integrated starter generator. in IEEE Conf. on Ind. Electron., IECON. 2006.
10. Jain, A.K., et al., Integrated starter generator for 42-V powernet using induction machine and direct torque control technique. Power Electronics, IEEE Transactions on, 2006. 21(3): p. 701-710.
11. Cai, W. Comparison and review of electric machines for integrated starter alternator applications. in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004. IEEE.
12. Bajec, P., et al. Bi-directional power converter for wide speed range integrated starter-generator. in Industrial Electronics, 2004 IEEE International Symposium on. 2004. IEEE.
13. Preobrazhensky, E.B. and A.N. Reshetnikov. An operation by SGU electric machine in a generating mode. in Electron Devices and Materials, 2004. Proceedings. 5th Annual. 2004 International Siberian Workshop on. 2004. IEEE.
14. Xu, L. and J. Liu. Comparison study of DC-DC-AC combined converters for integrated starter generator applications. in Power Electronics and Motion Control Conference, 2004. IPEMC 2004. The 4th International. 2004. IEEE.
15. Ooi, B.T. and X. Wang, Voltage angle lock loop control of the boost type PWM converter for HVDC application. Power Electronics, IEEE Transactions on, 1990. 5(2): p. 229-235.
16. In Gyu, P. and K. Seon Ik, A thyristor phase-controlled voltage-source converter with bidirectional power flow capability. Industry Applications, IEEE Transactions on, 1998. 34(5): p. 1147-1155.
17. Zhu, L., et al. Deep field-weakening control of PMSMs for both motion and generation operation. in Electrical Machines and Systems (ICEMS), 2011 International Conference on. 2011.
18. Huang, K.-H., Voltage Control Strategy and Efficiency Analysis of PMSG in the Regeneration Mode 2013, National Tsing Hua University: Taiwan. p. pp.69~pp.111.
19. Tremblay, O. , et al., A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. in Vehicle Power and Propulsion Conference, 2007. VPPC 2007. IEEE. 2007.
20. Kreyszig, E., Advanced Engineering Mathematics. 2010: John Wiley & Sons.
21. 劉昌煥, 交流電機控制: 向量控制與直接轉矩控制原理. 2006: 臺灣東華.
22. http://en.wikipedia.org/wiki/Dqo_transformation. 2014.
23. Skogestad, S. and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. 2005: John Wiley \\& Sons.
24. Chen, C.T., Linear System Theory and Design. 1999: Oxford University Press.
25. Murray, R.M., http://www.cds.caltech.edu/~murray/courses/cds110/wi06/lqr.pdf. 2006.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *