|
1. Lindstrom, P., Environment, in Annual Energy Review 2011. 2011, U.S. Energy Information Administration. p. 302. 2. Zhang, L.P. and Xia, Z.H., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. Journal of Physical Chemistry C, 2011. 115(22): p. 11170-11176. 3. Dresselhaus, M.S., Dresselhaus, G., and Saito, R., Physics of Carbon Nanotubes. Carbon, 1995. 33(7): p. 883-891. 4. Zhang, S., Shao, Y.Y., Yin, G.P., and Lin, Y.H., Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013. 1(15): p. 4631-4641. 5. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T., and Stonehart, P., Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric-Acid Fuel-Cells. Journal of the Electrochemical Society, 1994. 141(10): p. 2659-2668. 6. Watanabe, M., Tryk, D.A., Wakisaka, M., Yano, H., and Uchida, H., Overview of recent developments in oxygen reduction electrocatalysis. Electrochimica Acta, 2012. 84: p. 187-201. 7. Daube, K.A., Paffett, M.T., Gottesfeld, S., and Campbell, C.T., Combined Electrochemical Surface Science Investigations of Pt Cr Alloy Electrodes. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1986. 4(3): p. 1617-1620. 8. Paffett, M.T., Beery, J.G., and Gottesfeld, S., Oxygen Reduction at Pt0.65cr0.35, Pt0.2cr0.8 and Roughened Platinum. Journal of the Electrochemical Society, 1988. 135(6): p. 1431-1436. 9. Beard, B.C. and Ross, P.N., The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 1990. 137(11): p. 3368-3374. 10. Jalan, V. and Taylor, E.J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric-Acid. Journal of the Electrochemical Society, 1983. 130(11): p. 2299-2301. 11. Toda, T., Igarashi, H., and Watanabe, M., Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. Journal of the Electrochemical Society, 1998. 145(12): p. 4185-4188. 12. Santana, J.A., Mateo, J.J., and Ishikawa, Y., Electrochemical Hydrogen Oxidation on Pt(110): A Combined Direct Molecular Dynamics/Density Functional Theory Study. Journal of Physical Chemistry C, 2010. 114(11): p. 4995-5002. 13. Mateo, J., Tryk, D., Cabrera, C., and Ishikawa, Y., Underpotential deposition of hydrogen on Pt(111): a combined direct molecular dynamics/density functional theory study. Molecular Simulation, 2008. 34(10-15): p. 1065-1072. 14. Ishikawa, Y., Mateo, J.J., Tryk, D.A., and Cabrera, C.R., Direct molecular dynamics and density-functional theoretical study of the electrochemical hydrogen oxidation reaction and underpotential deposition of H on Pt(111). Journal of Electroanalytical Chemistry, 2007. 607(1-2): p. 37-46. 15. Greeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I.B., and Norskov, J.K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006. 5(11): p. 909-913. 16. Greeley, J. and Norskov, J.K., Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surface Science, 2007. 601(6): p. 1590-1598. 17. Greeley, J. and Norskov, J.K., Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009. 113(12): p. 4932-4939. 18. Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., and Wilcke, W., Lithium - Air Battery: Promise and Challenges. Journal of Physical Chemistry Letters, 2010. 1(14): p. 2193-2203. 19. Lin, Y.H., Cui, X.L., Yen, C., and Wai, C.M., Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal of Physical Chemistry B, 2005. 109(30): p. 14410-14415. 20. Hayes, K.E. and Lee, H.S., First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains. Chemical Physics, 2012. 393(1): p. 96-106. 21. Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., and Honma, I., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 2009. 9(6): p. 2255-2259. 22. Shao, Y.Y., Zhang, S., Wang, C.M., Nie, Z.M., Liu, J., Wang, Y., and Lin, Y.H., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 2010. 195(15): p. 4600-4605. 23. Lim, D.H. and Wilcox, J., Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles. Journal of Physical Chemistry C, 2012. 116(5): p. 3653-3660. 24. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Iterative Minimization Techniques for Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097. 25. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, 1990. 41(11): p. 7892-7895. 26. Thomas, A.H. and William, N.L., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 1977. 49: p. 2. 27. Aravind Asthagiri, M.J.J., Computational Catalysis, ed. P.J.J. Spivey. 2014, Cambridge, UK: The Royal Society of Chemistry. 28. Bligaard, T., Norskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., and Sehested, J., The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. Journal of Catalysis, 2004. 224(1): p. 206-217. 29. Falsig, H., Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic modeling, in Chemistry. 2010, Danmarks Tekniske Universitet p. 19. 30. Norskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., and Jonsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892. 31. Sorescu, D.C., Jordan, K.D., and Avouris, P., Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. Journal of Physical Chemistry B, 2001. 105(45): p. 11227-11232. 32. Wang, S., Petzold, V., Tripkovic, V., Kleis, J., Howalt, J.G., Skulason, E., Fernandez, E.M., Hvolbaek, B., Jones, G., Toftelund, A., Falsig, H., Bjorketun, M., Studt, F., Abild-Pedersen, F., Rossmeisl, J., Norskov, J.K., and Bligaard, T., Universal transition state scaling relations for (de)hydrogenation over transition metals. Physical Chemistry Chemical Physics, 2011. 13(46): p. 20760-20765.
|