帳號:guest(18.119.129.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昱劭
作者(外文):Lin, Yu-Shao
論文名稱(中文):漸擴流道設計之高溫高壓水氣轉移反應薄膜反應器數值模擬
論文名稱(外文):Numerical simulation of a water gas shift chemical reaction membrane reactor with a divergent flow channel design under high-temperature and high-pressure
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
邱耀平
口試委員(外文):Chen, Yen-Cho
Chyou, Yau-Pin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033523
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:79
中文關鍵詞:水氣轉移反應薄膜反應器漸擴流道一氧化碳轉換率氫氣回收率
外文關鍵詞:water gas shift reactionmembrane reactordivergent flow channelCO conversionH2 recovery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用數值模擬方式研究漸擴流道設計運用於水氣轉移反應薄膜反應器。在較短管長之薄膜反應器中,反應並不完全,然而當薄膜反應器採用漸擴流道設計可提升合成氣滯留時間、薄膜面積於反應端,此外漸擴流道令反應端減速使合成氣擁有更多時間進行反應而氫氣具有更多時間擴散,上述原因導致漸擴流道對薄膜反應氣產生極大的改善。而當反應端出口半徑較大之時,反應端可約略區分為三部分:滲透限制區、過度區、反應限制區,其中滲透限制區由於生成物的缺少導致滲透之影響遠小於反應,過度區則反應與滲透之影響不相上下,反應限制區則是由於生成物的累積導致滲透影響大於反應。總體而言,漸擴流道設計運用於水氣轉移反應薄膜反應器於本研究之操作條件下一氧化碳轉換率以及氫氣回收率皆有所顯著的提升。
This study shows the improvement on the performance of water gas shift reaction membrane reactor with divergent flow channels by numerical simulation. With a short length of membrane reactor, the complete chemical reaction of synthetic gas is not achieved. Both the residence time and membrane area increase in divergent flow channels on the reaction side. The divergent flow channel can slow down the velocity to provide more time to react for synthetic gas and to diffuse for H2. These reasons result in a significant performance improvement on both the reaction and permeation sides. For large reaction side outlet radius, the molar fraction can be separated into three regions: permeation limit, transition and reaction limit. In the region of permeation limit, the influence of reaction is much larger than that of permeation due to the lack of products. The influences of reaction and permeation are nearly equal in the transition region. In the region of reaction limit, the reaction rate is relatively slow because of abundant products. The membrane reactor with divergent flow channels improves the performance not only on CO conversion but also on H2 recovery under the conditions used in the present study.
Abstract I
中文摘要 II
Acknowledgments III
List of tables V
Nomenclature VI
Chapter 1 Introduction 1
Chapter 2 Water gas shift reaction membrane reactor 4
2-1 Literature review 4
2-2 Divergent membrane reactor 6
Chapter 3 Simulation model 7
3-1 Physical model 7
3-2 Mathematical model 9
3-3 Chemical reaction model 12
3-4 Permeation model 14
3-5 Boundary conditions 16
3-6 Numerical model 21
Chapter 4 Results 22
4-1 The influence of pre-exponential factor 22
4-2 The influence of feeding rate 48
4-3 The influence of sweeping gas flow rate 59
4-4 The influence of H2O/CO molar feeding ratio 62
Chapter 5 Conclusions 64
Chapter 6 Future work 65
Chapter 7 References 65
Appendix A - Gas mixture properties estimation 67
[1] DOE/EIA. Annual energy outlook; 2010.
[2]Tosti S, “Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories,” International Journal of Hydrogen Energy, Vol. 35, pp. 12650-9, 2010.
[3] Pinacci P, Broglia M, Valli C, Capannelli G, Comite A, “Evaluation of the wateregas shift reaction in a palladium membrane reactor,” Catalysis Today, Vol. 156, pp. 165-72, 2010.
[4]Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, “Enhancing the production of hydrogen via wateregas shift reaction using Pd-based membrane reactors,” International Journal of Hydrogen Energy, Vol. 35, pp. 12596-608, 2010.
[5] Babita K, Sridhar S, Raghavan KV, “Membrane reactors for fuel cell quality hydrogen through WGSR e review of their status, challenges and opportunities,” International Journal of Hydrogen Energy, Vol. 36, pp.1667-88, 2011.
[6] Mendes D, Mendes A, Madeira LM, Iulianelli A, Sousa JM, Basile A, “The wateregas shift reaction: from conventional catalytic systems to Pd-based membrane reactors e a review,” Asia-Pacific Journal of Chemical Engneering, Vol. 5, pp. 111-37, 2010.
[7] Ayturk ME, Kazantzis NK, Ma YH, “Modeling and performance assessment of Pd- and Pd/alloy-based catalytic membrane reactors for hydrogen production,” Energy Environmental Science, Vol. 2, pp. 430-8, 2009.
[8] Brunetti A, Caravella A, Barbieri G, Drioli E, “Simulation study of water gas shift reaction in membrane reactor,” Journal of Membrane Science, Vol. 306, pp. 329-40, 2007.
[9] Abdollahi M, Yu J, Liu PKT, Ciora R, Sahimi M, Tsotsis TT, “Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process,” Journal of Membrane Science, Vol. 363, pp. 160-9,2010.
[10] Marin P, Diez FV, Ordonez S, “Fixed bed membrane reactors for WGSR-based hydrogen production: optimisation of modelling approaches and reactor performance,” International Journal of Hydrogen Energy, Vol. 37, pp. 4997-5010, 2012.
[11] Koukou MK, Papayannakos N, Markatos NC, Bracht M, Alderliesten PT, “Simulation tools for the design of industrial-scale membrane reactors,” Chemical Engineering Research and Design, Vol. 76, pp. 911-20, 1998.
[12] Coroneo M, Montante G, Giacinti Baschetti M, Paglianti A, “CFD modelling of inorganic membrane modules for gas mixture separation,” Chemical Engineering Science, Vol. 64, pp. 1085-94, 2009.
[13] Coroneo M, Montante G, Catalano J, Paglianti A, “Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification,” Journal of Membrane Science, Vol. 343, pp. 34-41, 2009.
[14] Smith B, Muruganandam L, “CFD based optimization of water gas shift membrane reactor,” International Journal of Chemical Technology Research, Vol. 3, pp. 1520-5, 2011.
[15] Chen WH, Syu WZ, Hung CI, “Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube,” International Journal of Hydrogen Energy, Vol. 36, pp. 14734-44, 2012.
[16] Basile A, Criscuoli A, Santella F, Drioli E, “Membrane reactor for water gas shift reaction,” Gas Separation & Purification, Vol. 10(4), pp. 243-54, 1996.
[17] Chen WH, Hsu BJ. “Hydrogen permeation measurements of Pd and Pd-Cu alloy membranes using dynamic pressure difference method,” International Journal of Hydrogen Energy, Vol. 36, pp. 9355-66, 2011.
[18] Koc R, Kazantzis NK, Ma YH, “Process safety aspects in wateregas-shift (WGS) membrane reactors used for pure hydrogen production,” Journal of Loss Prevention in the Process Industries, pp. 1-18, 2011.
[19] Chen WH, Chiu IH, “Transient dynamic of hydrogen permeation through a palladium membrane,” International Journal of Hydrogen Energy, Vol. 34, pp. 2440-8, 2009.
[20] Augustine AS, Ma YH, Kazantzis NK, “High pressure palladium membrane reactor for the high temperature wateregas shift reaction,” International Journal of Hydrogen Energy, Vol. 36, pp. 5350-60, 2011.
[21] Catalano J, Guazzone F, Mardilovich IP, Kazantzis NK, Ma YH, “Hydrogen production in a large scale wateregas shift Pd-based catalytic membrane reactor,” Industrial & Engineering Chemistry Research, 2012, http://dx.doi.org/10.1021/ie2025008.
[22] Iyoha O, Enick R, Killmeyer R, Howard B, Ciocco M, Morreale B, “H2 production from simulated coal syngas containing H2S in multi-tubular Pd and 80 wt% Pde20 wt% Cu membrane reactors at 1173 K,” Journal of Membrane Science, Vol. 306, pp. 103-15, 2007.
[23] Sieverts A, Danz W, “Solubilities of D2 and H2 in palladium,” Z Phys Chem Abt B, Vol. 34, pp. 158-9, 1936.
[24] Ward L, Dao T, “Model of hydrogen permeation behavior in palladium membranes,” Journal of Membrane Science, Vol. 153, pp. 211-31, 1999.
[25]Chein R.Y., Chen Y.C., Chung J.N., “Parametric study of membrane reactors for hydrogen production via high-tmeperature water gas shift reaction,” International Journal of Hydrogen Energy, Vol. 38, pp. 2292-305, 2013.
[26] Parvazinia M, Nassehi V, Wakeman R, Ghoreishy M, “Finite element modeling of flow through a porous medium between two parallel plates using the Brinkman equation,” Transport in Porous Media, Vol. 63, pp. 71-90, 2006.
[27] Phanikumar M, Mahajan R, “Non-Darcy natural convection in high porosity metal foams,” International Journal of Heat Mass Transfer, Vol. 45, pp. 3781-93, 2002.
[28] Mills AF, “Mass transfer,” Englewood Cliffs, New Jersey: Pentice Hall; 2001.
[29] Adams TA, Barton PI, “A dynamic two-dimensional heterogeneous model for water gas shift reactors,” International Journal of Hydrogen Energy, Vol. 34, pp. 8877-91, 2009.
[30] Moe JM, “Design of water gas shift reactors,” Chemical Engineering Progress, Vol. 58, pp. 33-6, 1962.
[31] Vadlamudi VK, Palanki S, “Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications,” International Journal of Hydrogen Energy, Vol. 36, pp. 3364-70, 2011.
[32] Madia GS, Barbieri G, Drioli E, “Theoretical and experimental analysis of methane steam reforming in a membrane reactor,” Candian Journal of Chemical Engineering, Vol. 77, pp. 698-706, 1999.
[33] Chiappetta G, Clarizia G, Drioli E, “Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for wateregas shift reaction,” Chemical Engeering Journal, Vol. 136, pp. 373-82.
[34] Itoh N, Shindo Y, Haray K, “Ideal flow models for palladium membrane reactors,” Journal of Chemical Engineering, Vol. 23, pp. 420-, 1990.
[35] Francesconi JA, Mussati MC, Aguire PA, “Analysis of design variables for water-gas-shift reactors by model-based optimization,” Journal of Power Sources, Vol. 156, pp. 489-96, 2006.
[36] Perry RH, Green DW, “Perry’s chemical engineers’ handbook,” 7th ed, New York: McGraw-Hill; 1997
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *