帳號:guest(3.145.178.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭明誌
作者(外文):Guo, M. J.
論文名稱(中文):應用熵晶格波茲曼法與大渦數值模擬分析方管內紊流流場
論文名稱(外文):Large Eddy Simulation of Turbulent Square Duct Flow with Entropic Lattice Boltzmann Method
指導教授(中文):林昭安
指導教授(外文):Lin, C. A.
口試委員(中文):吳宗信
何正榮
口試委員(外文):Wu, J. S.
Ho, J. R.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033521
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:熵晶格波茲曼法大渦數值模擬
外文關鍵詞:Entropic lattice Boltzmann methodLarge eddy simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
應用熵晶格波茲曼法(ELBM)與大渦數值模擬(LES)分析方管內紊流流場為目前論文之目標。相較於LBGK,ELBM能改善數值的穩定性。另外,在LES方面,以Smargorinsky 模型作為subgrid-scale 模型來模擬紊流流場。當使用D3Q19-LBM時進行紊流模擬,會發現在角落會額外出現非物理的小vortex。我們將依據Kang的方式,以D3Q27-LBM來進行模擬,以解決此問題的發生。在模擬紊流流場之前,我們先利用條件RE_tau = 20、方管內之壓力驅動流,並以數值解與解析解相比較,驗證ELBM能否替代Navier-Stokes方程式。利用RE_tau = 300作為條件,模擬方管內之紊流流場。所得結果顯示,ELBM能夠捕捉紊流之特性。然而,目前的模擬結果仍需改進,尤其在近牆區域,所得之模擬結果尚未相當精準。
In this study, the entropic Lattice Boltzmann method (ELBM) and the Large eddy simulation (LES) will be applied to simulate the 3D turbulent duct flow. Comparing of the LBGK, the ELBM can improve the numerical stability. Also, the LES with Smargorinsky subgrid-scale model is adopted to simulate the turbulent duct flow. When utilizing the D3Q19 model, the non-physical small counter-rotating vortex on the duct corner were observed when simulating turbulent duct flow. Due to this reason, we will follow Kang et al. [18] adopting D3Q27 model within ELBM framework to simulate turbulent duct flow. In the beginning, we simulate the laminar Poiseuille flow at frictional Reynolds number Re = 20 and compare with the analytic solution to validate that whether ELBM is capable to recover the Navier-Stokes equation. Second, we simulate Re = 300 for 3D turbulent Poiseuille flow in a square duct. Results show that our simulation can capture correctly the turbulent quantities compared with existing measurement and data of Direct Numerical Simulation
(DNS). However, the present grid resolution is not adequate to fully capture the near wall turbulent structure.
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature survey. . . . . . . . . . . . . . . . . . . 3
1.2.1 Lattice Boltzmann method . . . . . . . . . . . . . . 3
1.2.2 Entropic lattice Boltzmann models . . . . . . .. . . 3
1.2.3 Boundary conditions . . . . . . . . . . . . . . . . 4
1.2.4 Large eddy simulations . . . . . . . . . . . . . . . 5
1.2.5 Turbulent Poiseuille flow . . . . . . .. . . . . . . 6
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . 7
2 Methodology . . . . . . . . . . . . . . . . . . . . . . 8
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . 8
2.2 The BGK and the low-Mach-number approximations . .. . 10
2.2.1 The BGK approximation . . . . . . . . . . . . . . . 10
2.2.2 The low-Mach-number approximation . . . . . . . . . 12
2.3 Discretization of the BGK equation . . . . . . . . . 13
2.3.1 Spatial discretization . . . . . . . . . . . . . . 13
2.3.2 Temporal discretization . . . . . . . . . . . . . . 15
2.3.3 The chapman-Enskog Expansion . . . . . . . . . . . 17
2.4 Entropic lattice Blotzmann method . . . . . . . . . . 17
2.5 Large Eddy Simulation . . . . . . . . . . . . . . . . 19
2.5.1 The filtering operation . . . . . . . . . . . . . 19
2.5.2 The filtered Navier-Stokes equations . . . . . . . 20
3 Numerical algorithm . . . . . . . . . . . . . . . . . .22
3.1 Simulation procedure . . . . . . . . . . . . . . . . 22
3.1.1 The entropic condition . . . . . . . . . . . . . . 24
3.2 The external forcing term . . . . . . . . . . . . . . 24
3.3 Boundary conditions . . . . . . . . . . . . . . . . . 24
3.4 The lattice Boltzmann Subgrid-scale model . . . . . . 27
3.5 Parallel algorithm . . . . .. . . . . . . . . . . . . 30
4 Numerical results . . . . .. . . . . . . . . . . . . . .32
4.1 3D laminar Poiseuille flow . . . . . . . .. . . . . . 32
4.2 3D turbulent Poiseuille flow . . . . . . . . . . . . 33
5 Conclusions 50
[1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynamics”, Physics Review Letters 67,3776, (1991).
[2] Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK model for Navier-Stokes equation”, Europhysics Letters 17, 479, (1992).
[3] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annual Reviews of Fluid Mechanics 30 329, (1998).
[4] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
Stokes equation”, Physics Review Letters 56, 1505, (1986).
[5] S. Wolfram, “Cellular automaton fluids 1: Basic theory”, Journal Statistic Physics 45, 471, (1986).
[6] S. Succi, E. Foti and F. J. HIGUERA, “Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method”, Europhysics Letters 9, 345, (1989).
[7] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations”, Europhysics Letters 9, 663, (1989).
[8] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Physics Reviews E 94, 511, (1954).
[9] S. Harris, “An introduction to the throry of the Boltzmann equation”, Holt, Rinehart and Winston, New York, (1971). 17, 479, (1992).
[10] H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes quations using a lattice gas Boltzmann method”, Physics Reviews A 45, R5339, (1992).
[11] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet. “Lattice gas hydrodynamics in two and three dimensions”, Complex System 1, 649, (1987).
[12] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics”, Phys. Fluids 6, 1285, (1994).
[13] S. Ansumali,and I. V. Karlin, “Entropy function approach to Lattice Boltzmann Method“, Journal of Statical Physicas Vol.107, Nos.1/2, (2002).
[14] I. V. Karlin, S. Succi, and S. S. Chikatamarla,“Comment on ”Numerical of the lattice Boltzmann method: Effects of collision models on lattice Boltzmann simulations”“, American Physical Society Physical review E.84, 098701,
(2011).
[15] M. Spasov, D. Rempfer, and P. Mokhasi,“Simulation of a turbulent channel flow with entropic Lattice Boltzmann method“, International Journal For Numerical Methods In Fluids 60:1241-1258, (2008)
[16] F. Tosi, S. Ubertini, S. Succi, and I. V. Karlin,“Optimization strategies for the Entropic lattice Boltzmann method“, Journal of Scientific Computing Vol. 30,
No. 3, (2006)
[17] X. He, Q. Zuo L. S. Luo, and M. Dembo, “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model“, Journal of Statistic Physics Vol.87, Nos.1/2, (1997)
[18] S. K. Kang, and Y. A. Hassan, “The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows“, Journal of Computational Physics 232, 100-117, (2013)
[19] E.van Driest, J. Aeronaut. Sci.23, 1007, (1956)
[20] I. Ginzbourg and P. M. Adler, “Boundary condition analysis for the three-dimensional lattice Boltzmann model“, J. Phys. II France 4, 191-214, (1994)
[21] J. Cheesewright, G. McGrath, and D. Petty, Queen Mary Westfield College, University of London, Aerodynamic Engineering Department Report No. ER1011, (1990), (unpublish)
[22] R. K. Madabhushi and S. P. Vanka, Phys. Fluids A 3, 2734, (1991)
[23] A. J. C. Ladd “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1.“, J. Fluid Mech., vol. 211, pp. 285-309, (1994)
[24] P. Lallemand and L. S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability“, Physics Review E 61, 6546, (2000).
[25] S. Succi S, G. Amati, R. Benzi, “Challenges in lattice Boltzmann computing“, Journal of Statistical Physics 81, 5, (1995).
[26] Y. H. Qian, S. Succi, S. A. Orszag, “Recent advances in lattice Boltzmann computing”, Annual Review of Computational Physics, vol. III, World Scientific: Singapore, 195, (1995).
[27] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, PMA. Sloot, “Lattice Boltzmann hydrodynamics on parallel systems“, Computer Physics Communications 111, 14, (1998).
[28] A. Dieter, Wolf-Gladrow, “Lattice Gas Cellular Automata and Lattice Boltzmann Models“. Springer: Berlin, (2000).
[29] S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow“, Ph.D. Thesis, Department of Mechanical Engineering, Kansas State University, (1995).
[30] D. d’Humi`eres, “Generalized lattice Boltzmann equation“, In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, vol. 159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
[31] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method”, Physics Reviews E 48, 4823, (1993).
[32] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids 7, 203, (1995).
[33] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulation”, Phys. Fluids 7, 2928, (1995).
[34] S. Chen, D. O. Martinez, and R. Mei, “On boundary conditions in lattice Boltzmann methods”, Phys. Fluids 8, 2527, (1996).
[35] Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids 9, 1591, (1997).
[36] C. F. Ho, C. Chang, K. H. Lin and C. A. Lin, Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations”, CMES, Vol. 44, no.2, 137,(2009).
[37] M. Krafczyk, J. Tolke, L. S. Luo, “Large-eddy simulation with a multiple-relaxation-time LBE model“, Journal of Modern Physics B Vol. 17, 1, (2003).
[38] J. Smagorinsky, “General circulation experiments with the primitive equations. I. The basic experiment“, Mon. Weather Rev. 91, 99, (1963).
[39] J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.“, Journal of Fluid Mechanics 41.2, 453, (1970).
[40] S. Hou, J. Sterling, S. Chen and G. D. Doolen, “A lattice Boltzmann subgrid model for high Reynolds number flows.”, Pattern formation and lattice gas
automata, vol.6, 151, (1996).
[41] H. Yu, S. S. Girimaji, and L. S. Luo, “DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method.”, Journal of Computational Physics 209.2, 599, (2005).
[42] H. Yu, L. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using an MRT lattice Boltzmann model.”, Computers and Fluids 35.8, 957, (2006).
[43] H. Yu and S. S. Girimaji, “Near-field turbulent simulations of rectangular jets using lattice Boltzmann method.”, Phys. Fluids 17, 125106, (2005).
[44] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.”, Physical Review E 79.2, 026703, (2009).
[45] K. N. Premnath, M. J. Pattison, and S. Banerjee, “Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method.” Physica A: Statistical Mechanics and its Applications 388.13, 2640, (2009).
[46] M. J. Pattison, K. N. Premnath, and S. Banerjee, “Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation.”, Physical Review E 79.2, 026704, (2009).
[47] L. S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases.”, Physical Review E 62.4, 4982, (2000).
[48] R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Re = 590.“, Phys. Fluids 11, 943, (1999).
[49] H. Abe, H. Kawamura, and Y. Matsuo, “Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence.“, J. Fluids Engineering- 123.2, 382, (2001).
[50] S. Gavrilakis, “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duet.“, Journal of Fluid Mechanics , Vol. 244, 101, (1992).
[51] A. Huser and S. Biringen, “Direct numerical simulation of turbulent flow in a square duct.“, Journal of Fluid Mechanics 257, 65, (1993).
[52] C. A. Lin and Y. C. Chen, “Parallel Implementations of Multi and Single Relaxation Time Lattice Boltzmann Methods.”, 22nd International Conference on Parallel Computational Fluid Dynamics, 17, (2010).
[53] Tamas I. Gombosi, “Gas kinetic theorem”, Cambridge University Press, (1994).
[54] X. He and L. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physics Reviews E 56, 6811, (1997).
[55] A. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows“, Advances in Geophysics 18, 237, (1975).
[56] B. R. Munson, D. F. Young, and T. H. Okiishi, “Fundamentals of fluid mechanics“, 401, (1990).
[57] H. W. Hsu. “Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct“, Ph.D. Thesis, Department of Mechanical Engineering,National Tsing Hua University, (2012).
[58] F. M. White, “Viscous Fluid Flow - 2nd ed.“, McGraw-Hill, (1991).
[59] S. H. Liu. “Analysis of Turbulent Flow in Square Duct by using Multiple-Relaxation Time Lattice-Boltzmann method and Large Eddy Simulation“ Master Thesis, Department of Mechanical Engineering, National Tsing Hua
Unversity, (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *