|
[1] B. Courtois and R. D. Blanton “MEMs-Introduction”, IEEE Design & Test of Computers, 1999, 16, 16-17. [2] T. Velten, H. H. Ruf, D. Barrow, N. Aspragathos, P. Lazarou, E. Jung, C. K. Malek, M. Richter, J. Kruckow and M. Wackerle, “Packaging of Bio-MEMS: Strategies, Technologies, and Applications”, IEEE Transactions on Advanced Packaging, 2005, 28, 533-546. [3] I. Byun, J. Yang and S. Park, “Fabrication of a new micro bio chip and flow cell cytometry system using Bio-MEMS technology”, Microelectronics Journal, 2008, 39, 717-722. [4] D. R. Reyes, D. Lossifidis, P. A. Auroux and A. Manz, “Micro total analysis system Ι: introduction, theory and technology”, Analytical Chemistry, 2002, 74, 2623-2636. [5] P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, “Micro total analysis systems II: analytical standard operations and applications”, Analytical Chemistry, 2002, 74, 2637-2652. [6] A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing”, Sensors and Actuators B, 1990, 1, 244-248. [7] D. J. Slamon, V. Paton and J. Wolter, “Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2”, The New England Journal of Medicine, 2001, 344, 783. [8] J. T. Hsu, T. C. Chen, J. H. Tseng, C. T. Chiu, K. H. Liu, C. N. Yeh, T. L. Hwang, Y. Y. Jan and T. S. Yeh, “Impact of HER-2 overexpression/amplification on the prognosis of gastric cancer patients undergoing resection: a single-center study of 1,036 patients”, The Oncologist, 2011, 16, 1706-1713. [9] V. Roy and E. A. Perez, “Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer”, The Oncologist, 2009, 14, 1061-1069. [10] M. A. Olayioye, “Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members”, Breast Cancer Research, 2001, 3, 385–389. [11] F. Puglisi F, A. M. Minisini and C. De Angelis, “Overcoming treatment resistance in HER2-positive breast cancer: potential strategies”, Drugs, 2012, 72, 1175-1193. [12] X. F. Le, F. Pruefer and R. Bast, “HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways”, Cell Cycle, 2005, 4, 87-95. [13] P. Lichter, S. A. Ledbetter, D. H. Ledbetter and D. C. Ward, “Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines”, Proceedings of the National Academy of Science of the United States of America, 1990, 87, 6634-6638. [14] D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas and J. Gray, “Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4”, Proceedings of the National Academy of Science of the United States of America, 1988, 85, 9138-9142. [15] E. Vanneste, C. Melotte, S. Debrock, T. D’Hooghe, H. Brems, J. P. Fryns, E. Legius and J. R. Vermeesch, “Preimplantation genetic diagnosis using fluorescent in situ hybridization for cancer predisposition syndromes caused by microdeletions”, Human Reproduction, 2009, 24, 1522-1528. [16] J. L. Fox, P. H. Hsu, M. S. Legator, L. E. Morrison and S. A. Seeling, “Fluorescence in situ hybridization: powerful molecular tool for cancer prognosis”, Clinical Chemistry, 1995, 41, 1554-1559. [17] M. A. Leversha, J. Han, Z. Asgari, D. C. Danila, O. Lin, R. G. Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher and H. L. Scher, “Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer”, Clinical Cancer Research, 2009, 15, 2091-2097. [18] J. Nath and K. L. Johnson, “A review of fluorescence in situ hybridization (FISH): current status and future prospects”, Biotechnic and Histochemistry, 2000, 75, 54-78. [19] P. R. Langer-Safer, M. Levine and D. C. Ward, “Immunological method for mapping genes on Drosophila polytene chromosomes”, Proceedings of the National Academy of Science of the United States of America, 1982, 79, 4381-4385. [20] M. Andreeff and D. Pinkel (eds.), “Introduction to Fluorescence in situ Hybridization: Principles and Clinical Applications”, Wiley, New York, 1999. [21] C. J. Ye, J. B. Stevens, G. Liu, K. J. Ye, F. Yang F, S. W. Bremer and H. H. Q. Heng, “Combined multicolor-FISH and immunostaining”, Cytogenetic and Genome Research, 2006, 114, 227-234. [22] R. Amann and B. M. Fuchs, “Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques”, Nature, 2008, 6, 339-348. [23] Z. Mitri, T. Constantine and R. O'Regan, “The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy”, Chemotherapy Research and Practice, 2012, 2012. [24] C. H. Weng, K. Y. Lien, S. Y. Yang and G. B. Lee, “A suction-type, pneumatic microfluidic device for liquid transport and mixing”, Microfluidics and Nanofluidics, 2011, 10, 301-310. [25] C. W. Huang, S. B. Huang and G. B. Lee, “Pneumatic micropumps with serially connected actuation chambers”, Journal of Micromechanics and Microengineering, 2006, 16 2265–2272. [26] W. K. Schomburg and C. Goll, “Design optimization of bistable microdiaphragm valves”, Sensor and Actuators A, 1998, 64, 259-264. [27] I. Vedarethinam, P. Shah, M. Dimaki, Z. Tumer, N. Tommerup and W. E. Svendsen, “Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization”, Sensors, 2010, 10, 9831-9846. [28] C. H. Tai, C. L. Ho, Y. L. Chen, W. L. Chen and G. B. Lee, “A novel integrated microfluidic platform to perform fluorescence in situ hybridization for chromosomal analysis”, Microfluidics and Nanofluidics, 2013, 15, 745–752. [29] D. C. Duffy, J. C. McDonald, O. J. A. Schueller and George M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)”, Analytical Chemistry, 1998, 70, 4974-4984. [30] Y. N. Yang, S. K. Hsiung and G. B. Lee, “A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure”, Microfluidics and Nanofluidics, 2009, 6, 823-833.
|