帳號:guest(18.220.181.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳穎農
論文名稱(中文):利用螢光感測分子技術進行微管道內溫度及速場同步量測
論文名稱(外文):Simultaneous measurement of velocity and temperature profile in microchannel flow using molecule based sensors
指導教授(中文):劉通敏
黃智永
口試委員(中文):陳紹文
劉通敏
黃智永
王明文
施冠丞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033515
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:微粒子影像測速技術溫度螢光感測分子同步量測衰變時間
外文關鍵詞:PIVTSPSimultaneous measurementLifetime
相關次數:
  • 推薦推薦:0
  • 點閱點閱:278
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
本研究主旨為整合微分子螢光溫度量測技術(TSP)與微粒子影像測速技術(μ-PIV)並利用既有之μ-PIV設備建立微尺度下之溫度及速度同步量測系統,以簡化同步量測的實驗架設複雜度,解決微尺度熱傳研究中速度與溫度分別量測所造成之實驗誤差問題。為建立同步量測技術中的溫度量測方法,本研究擇定以螢光分子EuTTA來建立微尺度下的螢光衰變校正的溫度量測技術Lifetime-based TSP。實驗中利用像素合併、提升溫度螢光溶液濃度、增加激發光源驅動功率之方式增加實驗中由CCD相機所擷取之螢光影像亮度,實現以量測衰變時間來偵測溫度的技術。
為避免研究微流體熱傳之軸向熱傳效應,本研究以微製程方式製作微型加熱器,並將該微型加熱器裝置於微直管道中,以所開發的同步量測技術取得PDMS微矩形流道在單面定熱通量的加熱方式之下乙醇溶液溫度及速度場,藉此驗證本技術之可行性。於微尺度下本技術可經由CCD相機擷取流場中包含螢光粒子亮點的螢光影像同步成功量測微流道內之溫度及速度場之分布,且由所取得液體軸向溫度分布圖可證明微型加熱器可成功解決軸向熱傳之問題。
於本研究中所開發的同步量測系統僅需使用一台CCD相機即可量測微流道中之溫度與速度場,本技術於25℃至40℃間螢光感測溶液之靈敏度為5.06 μs/℃,空間解析度則可達5.38 μm/pixel。
摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XII
符號說明 XIII
第一章、 序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 17
1.4 論文架構 18
第二章、 實驗原理 19
2.1 溫度螢光感測塗料(TSP) 19
2.2 微粒子影像測速技術(μ-PIV)量測原理 26
2.3 微流道熱傳分析 27
第三章、 實驗方法 32
3.1 微流道製作 32
3.2 同步量測實驗系統 35
3.3 溫度螢光感測分子研究 50
3.4 微型加熱器製作 58
第四章、 數值模擬分析 63
4.1 數值分析基本假設 63
4.2 微直管道數值模擬 63
第五章、 微矩形流道溫度與速度同步量測 66
5.1 溫度場實驗量測結果 66
5.2 微直管道同步量測之速度場量測結果 81
第六章、 影像處理與誤差分析 87
6.1 影像處理 87
6.2 誤差分析 90
第七章、 結論與未來工作 101
參考文獻 104
[1] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[2] C. Huang, J. W. Gregory, H. Nagai, K. Asai, and J. P. Sullivan, "Molecular Sensors in Microturbine Measurement," in ASME 2006 International Mechanical Engineering Congress and Exposition, 2006, pp. 577-583.
[3] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, p. 037001, 2013.
[4] R. J. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual review of fluid mechanics, vol. 23, pp. 261-304, 1991.
[5] C. Meinhart, A. Prasad, and R. Adrian, "A parallel digital processor system for particle image velocimetry," Measurement Science and Technology, vol. 4, p. 619, 1993.
[6] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, pp. 316-319, 1998.
[7] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "PIV measurements of a microchannel flow," Experiments in fluids, vol. 27, pp. 414-419, 1999.
[8] P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, et al., "In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart," Journal of biomechanics, vol. 39, pp. 1191-1200, 2006.
[9] R. Lindken, J. Westerweel, and B. Wieneke, "Stereoscopic micro particle image velocimetry," Experiments in Fluids, vol. 41, pp. 161-171, 2006.
[10] H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, "Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV," Lab on a Chip, vol. 7, pp. 338-346, 2007.
[11] R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, vol. 17, p. 797, 2006.
[12] L. Pietri, M. Amielh, and F. Anselmet, "Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and Laser Doppler Anemometry," International journal of heat and fluid flow, vol. 21, pp. 22-36, 2000.
[13] H. Park, D. Dabiri, and M. Gharib, "Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder," Experiments in Fluids, vol. 30, pp. 327-338, 2001.
[14] T. Praisner, D. Sabatino, and C. Smith, "Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements," Experiments in fluids, vol. 30, pp. 1-10, 2001.
[15] P. Pringsheim, "Fluorescence and phosphorescence," 1949.
[16] H. Hu and M. M. Koochesfahani, "Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder," Measurement Science and Technology, vol. 17, p. 1269, 2006.
[17] A. Omrane, P. Petersson, M. Aldén, and M. Linne, "Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors," Applied Physics B, vol. 92, pp. 99-102, 2008.
[18] S. Someya, S. Yoshida, Y. Li, and K. Okamoto, "Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles," Measurement Science and Technology, vol. 20, p. 025403, 2009.
[19] S. Grafsrønningen and A. Jensen, "Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder," International Journal of Heat and Mass Transfer, vol. 55, pp. 4195-4206, 2012.
[20] J. Vogt and P. Stephan, "Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields," Measurement Science and Technology, vol. 23, p. 105306, 2012.
[21] B.-H. Huang, "The experimental study of heat transfer with segmented flow in microchannel using temperature sensitive paint and micro particle image velocimetry," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[22] G. Maranzana, I. Perry, and D. Maillet, "Mini-and micro-channels: influence of axial conduction in the walls," International Journal of Heat and Mass Transfer, vol. 47, pp. 3993-4004, 2004.
[23] G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. Yarin, "Heat transfer in micro-channels: Comparison of experiments with theory and numerical results," International Journal of Heat and Mass Transfer, vol. 48, pp. 5580-5601, 2005.
[24] N. Caney, P. Marty, and J. Bigot, "Friction losses and heat transfer of single-phase flow in a mini-channel," Applied thermal engineering, vol. 27, pp. 1715-1721, 2007.
[25] C.-A. Li, "The Study of Fluid Flow and Heat Transfer inside Rectangular PDMS Microchannel," Master, Power Mechanical Engineering, National Tsing Hua University, 2011.
[26] R. K. Shah and A. L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data vol. 1: Academic press, 1978.
[27] M. Olsen and R. Adrian, "Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry," Experiments in Fluids, vol. 29, pp. S166-S174, 2000.
[28] M. Rossi, R. Segura, C. Cierpka, and C. J. Kähler, "On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV," Experiments in fluids, vol. 52, pp. 1063-1075, 2012.
[29] B. Zelelow, G. E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J. B. Callis, et al., "Dual luminophor pressure sensitive paint: II. Lifetime based measurement of pressure and temperature," Sensors and Actuators B: Chemical, vol. 96, pp. 304-314, 2003.
[30] N. Çelebi, M. Arık, and Y. Onganer, "Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution," Journal of luminescence, vol. 126, pp. 103-108, 2007.
[31] M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry, Third Edition: CRC Press, 2006.
[32] L. M. Coyle and M. Gouterman, "Correcting lifetime measurements for temperature," Sensors and Actuators B: Chemical, vol. 61, pp. 92-99, 1999.
[33] S.-S. Hsieh and C.-Y. Lin, "Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces," International Journal of Heat and Mass Transfer, vol. 52, pp. 260-270, 2009.
[34] C.-M. Wu, "The application of molecule-based temperature sensors for surface and fluid temperature measurement inside rectangular microchannel under constant heat flux boundary condition," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[35] Z. Duan and Y. Muzychka, "Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels," Journal of Fluids Engineering, vol. 132, p. 011201, 2010.
[36] H.-S. Chuang, S. T. Wereley, and L. Gui, "Characterization of single pixel evaluation PIV for precise flow measurement," in 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *