帳號:guest(13.59.218.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王源煒
論文名稱(中文):氣動引擎複合內燃機之怠速啟動與煞車回收的應用
論文名稱(外文):The Feasibility Study of Idle Start and Regenerative Braking Applications in Air Hybrid Engines
指導教授(中文):黃智永
口試委員(中文):曾坤樟
宋震國
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033510
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:氣動引擎煞車回收怠速啟動
外文關鍵詞:air engine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:154
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
研究主旨藉由實驗量測與理論分析評估氣動引擎複合系統應用於煞車時動能回收效能分析,同時進行怠速啟動的可行性評估。首先進行理論分析,依據活塞式氣動引擎的作動原理及流體特性,以熱力學模型與商用軟體MATLAB建立氣動引擎的理論分析模組,並利用理論分析煞車回收系統之回收性能,並進一步討論煞車回收系統加裝緩衝區後的實驗設定。同時進行怠速啟動的理論分析,於理論分析結果中得知,四行程作動時的壓縮行程時會因缸內壓力太大對活塞產生阻力,使活塞無法順利運作。
實驗部分則先將傳統四行程內燃機引擎改裝成四行程氣動引擎,以葉片式氣動當作動力端模擬實際煞車時的車輛動能轉換的轉動慣量,再藉由聯軸器帶動活塞式氣動引擎進行煞車回收試驗。為了降低壓縮行程時所產生負功,於原火星塞位置加裝緩衝區,並且進行實驗測試。實驗時改變實驗參數包括:缸內的啟動時氣體溫度、動力端的起始輸出扭力、緩衝區的體積以及背壓閥的持壓壓力來探討不同條件下的煞車回收效能表現,並且找出最佳的實驗設定與原始四行程煞車回收系統比較。最後於實驗結果中,可以發現緩衝區的運用能有效降低缸內壓力,但因緩衝區內的閥門與管線會造成能量損失,使得四行程煞車回收系統加裝緩衝區後的回收壓力較差。而在二行程與四行程煞車回收系統比較中可知,因二行程作動方式較適合氣動引擎的運作,故其回收性能較佳。於四行程怠速啟動的實驗測試中,發現因時序關係使得引擎無法順利運作,改換為二行程怠速啟動後可以順利運行,同時二行程煞車回收系統回收最高壓力為6.5 bar比二行程怠速啟動之最低啟動壓力4 bar 高,此表示若可使用轉換裝置控制四行程內燃機引擎與二行程氣動引擎運轉連結,怠速啟動與煞車回收之運用於二行程氣動引擎有較高的可行性。
The study aims to investigate the feasibility of integrating piston compressed air engines in four-stroke internal combustion engine for idle start and regenerative braking application. The simulation model is developed to analyze the engine cylinder pressure and recycle pressure in the storage tank during operations using thermodynamic and gas dynamic models. The simulation model is developed using commercially available software (MATLAB). From the simulation results, a buffer tank is necessary in the four-stroke operation due to the increased pressure in the cylinder and resistance of piston movement during compression process.
A 100 cc IC engine has been modified for compressed air operation to examine the recycle pressure and fluid properties at various cranking torques and different buffer tank volumes during regenerative braking. The results show that the compressed air engine operated at two-stroke cycle has better performance than the four-stroke one, which has higher recycle pressure and better efficiency . This study also tested the idle start operation with four-stroke design, but it didn’t succeed with current valve timing. It has been identified that two-stroke operation has better performance not only in regenerative braking but also high possibility for the application of idle start. However, a specified mechanism is needed for transferring the four-stroke operation to two-stroke. During two-stroke regenerative braking, the highest recycle pressure is 6.5 bar which is higher than the minimum pressure for idle start ( ~4 bar). The application of compressed air engine for idle start and regenerative braking is feasible if it is operated in two-stroke mode.
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XV
符號說明 XVI
一般符號 XVI
希臘符號 XVII
下標符號 XVII
第一章、 序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 氣體動力複合內燃機引擎之研究 3
1.2.2 氣體動力引擎作為動力源之研究 12
1.2.3 氣體動力為載具應用 13
1.3 研究目的 16
1.4 研究架構 18
第二章、 氣體動力引擎理論分析方法 19
2.1 理想假設 19
2.2 活塞式氣動引擎 20
2.3 理論基礎 21
2.3.1 汽缸進氣 22
2.3.2 等熵壓縮 23
2.3.3 等熵膨脹 24
2.3.4 汽缸排氣 25
第三章、 氣體動力引擎數值分析結果 27
3.1 100 cc四行程氣動引擎煞車回收理論分析 28
3.2 100 cc四行程氣動引擎煞車回收加裝緩衝區理論分析 30
3.2.1 不同緩衝區體積對煞車回收引響之影響 33
3.2.2 不同儲氣瓶體積對煞車回收引擎之影響 34
3.2.3 不同緩衝區背壓持壓對煞車回收引擎之影響 36
3.3 理論效率計算分析 38
3.3.1 理論分析煞車進行時間對能量回收與效率之影響 40
3.3.2 不同儲氣瓶體積對煞車回收系統效率之影響 42
3.4 100cc二行程與四行程氣動引擎煞車回收理論分析比較 43
第四章、 實驗方法 45
4.1 氣動引擎 45
4.1.1 動力端-葉片式氣動引擎 45
4.2 緩衝區設計 46
4.2.1 回收系統設置 48
4.3 實驗平台 49
4.3.1 實驗設備與儀器 50
4.4 實驗測量方法 52
4.5 誤差分析 54
第五章、 煞車回收系統量測結果 56
5.1 100 cc四行程氣動引擎煞車回收系統 56
5.2 容積效率對煞車回收系統影響 60
5.3 100cc四行程氣動引擎煞車回收加裝緩衝區探討 62
5.3.1 不同緩衝區體積量測 63
5.3.2 不同緩衝區背壓閥持壓量測 67
5.3.3 於不同動力端起始輸出扭力下的量測 70
5.3.4 四行程煞車回收系統加裝緩衝區效果比較 72
5.4 100 cc二行程氣動引擎煞車回收 75
5.5 理論計算結果與實驗結果比較 79
5.5.1 100 cc四行程氣動引擎煞車回收加裝緩衝區 79
5.5.2 二行程氣動引擎 80
第六章、 怠速啟動可行性評估 82
6.1 怠速啟動之理論分析 83
6.2 怠速啟動之實驗方法 85
6.3 怠速啟動之實驗測試 86
6.4 怠速啟動於不同時序下理論分析 88
6.5 二行程氣動引擎實驗測試 90
6.5.1 二行程煞車回收高壓空氣進行怠速啟動測試 93
第七章、 結論與未來工作 94
參考文獻 97
[1] K. D. Huang and S.-C. Tzeng, "Development of a hybrid pneumatic-power vehicle," Applied Energy, vol. 80, pp. 47-59, 2005.
[2] M. M. Schechter, "New cycles for automobile engines," SAE Technical Paper1999.
[3] M. M. Schechter, "Regenerative Compression Braking- A Low-Cost Alternative to Electric Hybrids," Training, vol. 2014, pp. 03-24, 2000.
[4] http://www.mdi.lu/2014%20produits.php
[5] Y.-T. Shen and Y.-R. Hwang, "Design and implementation of an air-powered motorcycles," Applied Energy, vol. 86, pp. 1105-1110, 2009.
[6] 游智傑, "活塞式氣體動力引擎進排氣系統開發與載具應用," 碩士論文, 動力機械研究所, 國立清華大學, 2013.
[7] P. Higelin, A. Charlet, and Y. Chamaillard, "Thermodynamic simulation of a hybrid pneumatic-combustion engine concept," International Journal of Thermodynamics, vol. 5, pp. 1-11, 2010.
[8] K. D. Huang, S.-C. Tzeng, and W.-C. Chang, "Energy-saving hybrid vehicle using a pneumatic-power system," Applied Energy, vol. 81, pp. 1-18, 2005.
[9] K. D. Huang, S.-C. Tzeng, W.-P. Ma, and W.-C. Chang, "Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine," Applied energy, vol. 82, pp. 117-132, 2005.
[10] M. Andersson, B. Johansson, and A. Hultqvist, "An air hybrid for high power absorption and discharge," SAE Technical Paper2005.
[11] X. Wang, C. Tai, P. N. Blumberg, H. Kang, and T.-C. Tsao, "Modeling of compressed air hybrid operation for a heavy duty diesel engine," Journal of Engineering for Gas Turbines and Power, vol. 131, p. 052802, 2009.
[12] C.-Y. Lee, H. Zhao, and T. Ma, "A low cost air hybrid concept," Oil & Gas Science and Technology–Revue de l’Institut Français du Pétrole, vol. 65, pp. 19-26, 2010.
[13] C.-Y. Lee, H. Zhao, and T. Ma, "A simple and efficient mild air hybrid engine concept and its performance analysis," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, pp. 120-136, 2013.
[14] F. Phillips, I. Gilbert, J.-P. Pirault, and M. Megel, "Scuderi split cycle research engine: overview, architecture and operation," SAE Technical Paper 2011.
[15] S. Trajkovic, P. Tunestål, and B. Johansson, "Introductory study of variable valve actuation for pneumatic hybridization," SAE technical paper series, 2007.
[16] C.-Y. Huang, C.-K. Hu, C.-J. Yu, and C.-K. Sung, "Experimental investigation on the performance of a compressed-air driven piston engine," Energies, vol. 6, pp. 1731-1745, 2013.
[17] T. L. Hill, An introduction to statistical thermodynamics: Courier Dover Publications, 2012.
[18] 胡政綱, "活塞式氣體動力引擎分析與效能提升," 碩士論文, 動力機械研究所, 2012.
[19] J. D. Anderson, Modern compressible flow with historical perspective, 2003.
[20] KYMCO 光陽機車http://www.kymco.com.tw/
[21] 蔡欣正, 內燃機的理論與實際, 1987-09.
[22] T. Jacobs, D. Assanis, and Z. Filipi, "The impact of exhaust gas recirculation on performance and emissions of a heavy-duty diesel engine," SAE Technical Paper2003.
[23] M. Zheng, G. T. Reader, and J. G. Hawley, "Diesel engine exhaust gas recirculation––a review on advanced and novel concepts," Energy conversion and management, vol. 45, pp. 883-900, 2004.
[24] GAST. http://www.gastmfg.com/
[25] http://www.sanlien.com/web/homepage.nsf/sanlien-index?openform
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *