|
[1] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156 (1999): 209-240. [2] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Siam J. Number. Anal. 1994 156:209 [3] R.J. LeVeque, Z. Li, The immersed interface method for eStokes flow with elastic boundaries or surface tension. Siam J. Dci. Comput. 1997 18:709. [4] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 2002 176:231 [5] Z. Li, M.C. Lai, The ommersed interface method for the Navier-Stokes equations with singular forces. J. Comp. Phys. 2001 171:822 [6] Z. Li, An overview of the immersed interface method and its applications. Twaiwanese J. Math 2003 7:1 [7] C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comp. Phys. 1972 10:252 [8] C.S. Peskin, The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. Annual Review of Fluid Mechanics 1982 14:235 [9] R.P. Beyer, R.L. LeVeque, Analysis of a one-dimensional model for the immersed boundary method. Siam J. Number Anal. 1992 29:332 [10] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comp. Phy. 2000 160:705 [11] D. Glodstein, R. Handler, L. Sirovich, Modeling a no-slip flow with an external force field. J. Comp. Phys. 1993 105:354 [12] D. Glodstein, R. Handler, L. Sirovich Direct numerical simulation of turlent flow over a modeled riblet covered surface. J. Fluid Mech. 1995 302:333 [13] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of twodimensional flow over a circular cylinder using the immersed boundary method. J. Comp. Phys. 2003 189:351 [14] E.M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow : application of a virtual boundary method. J. COmp. Phys. 1996 123:450 [15] R. Mittal, G. Iaccarino, Immersed boundary methods. Annual Review of Fluid Mechanics 2005 37:239-261 [16] J. Mohd-Yusof, Combined immersed boundary/B-Spline method for simulationsof flows in complex geometries in complex geometries CTR annual research briefs. NASA Ames/Stanford University; 1997 [17] R. Verzicco, J.Mohd-Yusof, P.Orlandi, D. Haworth, LES in complex geometries using boundary body forces. AIAA Journal 2000; 38:427-433 [18] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed boundary methods for three dimensional complex flow simulations. J. Comp. Phys. 2000;161:30 [19] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computer and Fluids 2004;33:375-404 [20] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary boundary method for flow in complex geometry. J. Comp. Phys. 2003; 192:593 [21] J. Kim, D. Kim, H. Choi, An immersed boundary finite volume method for simulations of flow in complex geometries. J. Comp. Phys. 2001;171:132 [22] S.W. Su, M.C. Lai, C.A. Lin, A simple immersed boundary technique for simulating amplex flows with rigid boundary. Com. and Fluids 2007;36:313- 324 [23] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 2006;215:12-24 [24] M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. J. Numer. Meth. Fluids 2005;48:691-722 [25] H.S. Udaykumar, R. MIttal, W. Shyy, Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comp. Phys. 1999;535-574 [26] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comp. Phys. 2001;174:345-380 [27] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar, Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 2005;210:1-31 [28] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body. J. Comp. Phys. 2006;212:662-680 [29] S. Xu, Z.J.Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries. J. Comp. Phys. 2006;216:454-493 [30] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictious domain approach to the direct numerical simulation of imcompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comp. Phys. 169 2001 363-426 [31] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comp. Phys. 195 2004 602-628 [32] J. Yang, F. Stern, A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows. Journal of Fluids Engineering Vol.136 040904-1 [33] W.P. Breugem, 2012, A Second-Order Accurate Immersed Boundary Method for Fully Resolved Simulations of Particle-Laden Flows, J. Comp. Phys., 231(13), pp. 4469-4498. [34] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar. Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210 (2005) 1-31. [35] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176 (2002): 231-275. [36] Z. Li, C. Wang. A Fast Finite Differenc Method For Solving Navier-Stokes Equations on Irregular Domains. Comm. Math. Sci. 1 (2003): 180-196. [37] D.V Le, B.C. Khoo, J. Peraire. An immersed interface method for the incompressible Navier-Stokes equations in irregular domains, Proceedings of the third MIT conference on computational fluid and solid mechanics, 710, Elsevier Science, Jane 2005. [38] D. Russell, Z.J. Wang. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. J. Comput. Phys. 191 (2003): 177-205. [39] M. Schafer, S. Turek. The benchmark problem flow around a cylinder. In Flow Simulation with High-Performance Computer II, Hirschel EH (ed.). Notes in Numerical Fluid Mechanics, 52(Vieweg, Braunschweig, 1996) 547-566. [40] D.J. Chen, K.h. Lin, C.A. Lin, Immersed boundary method based lattice Boltzmann method to simulate 2d and 3d complex geometry flows, Int. J. Mod. Phys. C 18 (2007) 585-594. [41] J.I. Choi, R.C. Oberoi, J.R. Edwards, K.A. Rosati, An immersed boundary method for complex incompressible flows, J. Comput. Phys. 244 (2007) 757-784. [42] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Lowe-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech. 360 (1998) 249-271. [43] A. ten Cate, C.H. Nieuwstad, J.J. Derksen, H.E. A Van den Akker, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14 (2002) 4012-4025. [44] Z.G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys. 202 (2005) 251. [45] A.J.C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids 9, 491 (1977). [46] C.E. Pearson, A computational method for time dependent two dimensional incompressible viscous flow problems Report No. SRRC-RR-64-17. Sudbury(MA): Sperry Rand Reasearch Center; 1964. [47] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough, “Simulating flows with moving rigid boundary using immersed-boundary method.“ Computers & Fluids, Vol 39, 2010, pp.152-167. [48] P.H. Chang, C.C. Liao , H.W. Hsu , S.H. Liu and C.A. Lin, Simulations of laminar and turbulent flows over periodic hills with immersed boundary method, Computers and Fluids, Vol 92, 2014, pp. 233-243 [49] H. Choi, P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys. 113 (1994) 1-4. [50] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. phys. 59 (1985) 308-323. [51] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. phys. 85 (1989) 257-283. [52] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin, A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers and Fluids,45 (2011) 138-146. [53] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010) < http : //www.mcs.anl.gov/petsc >. [54] M.N Chang, A parallel multilevel presondidioned iterative pressure Poisson solver for 3D lid-driven cavity. Master thesis, Department of Mechanical Engineering, National Tsing Hua University (2013) [55] Y. Saad, Iterative methods for sparse linear system. Second ed., Philadelphia: SIAM (2004). |