帳號:guest(3.128.203.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭文瑋
作者(外文):HSIAO, WEN-WEI
論文名稱(中文):沉浸邊界法結合平行化疊代求解器於移動邊界問題之數值分析
論文名稱(外文):Numerical Simulations of the Immersed Boundary Formulation with a Parallel Iterative Solver for Flow with Moving Boundary
指導教授(中文):林昭安
口試委員(中文):牛仰堯
黃楓南
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033508
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:沉浸邊界法固體施力物體掉落
外文關鍵詞:Immersed boundary methodsolid-body forcingfalling objects
相關次數:
  • 推薦推薦:0
  • 點閱點閱:441
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
在這篇論文中,我們使用了沉浸邊界法模擬二維與三維非黏滯性流體與固體移動邊界交互作用之問題。在處理固定與移動邊界問題,我們接施以外力的方式讓流場模擬出沉浸的固體。數值的精準度使用了decaying vortex來做測試,從結果可以看出數值誤差有達到二接精準度。接著使用沉浸邊界法模擬了多個問題: 非對稱圓柱之二維流場、圓柱在靜止流體中來回震盪、三維球體因重力作用掉落之問題、三維空間中兩顆球體掉落之問題。所有的模擬結果皆跟實驗與理論值接近,顯現出以沉浸邊界法模擬沉浸邊界是可以模擬出現時的狀況。
所有的程式撰寫皆建立在PETSc這個具有平行運算與矩陣球解的工具上。使用平行處理可以更加快我們處理二維與三維的龐大問題上。結果與討論的最後對程式進行了二維與三維的效率測試,在16個CPU以下二維與三維具有類似的加速效果,而在32個CPU時二維的加速效率則比三維的高。然而,整體的加速效率仍然差理論值有一段距離,這是目前可以再加強的部分。
In the present study, we use the immersed-boundary technique to simulate two and three-dimensional viscous incompressible flows interacting with moving solid boundaries. For both stationary and moving boundary problems, we apply the solid
body forcing within the solid node and provide a procedure to implement the forcing nodes between the non-stationary fluid and solid body. The accuracy of numerical scheme is first examined by decaying vortex test, and the results show that these are second-order accurate with respect to the L2 norm and the L∞ norm. Further test problems are simulated to examine the validity of the present immersed-boundary technique such as 2-D flow over an asymmetrically-placed cylinder, in-line oscillating cylinder in fluid at rest, and 3-D simulation of a sphere settling under gravity. In addition to one moving object, two spheres sedimenting in a closed container filled with a viscous fluid are investigated. There must be a collision model to prevent
the spheres penetrating into each other. All the computed results are in generally good agreement with experimental measurements. This indicates the capability of the present implementation in solving flows with moving solid objects.
The above implementations and techniques are all constructed on the software of PETSc, which is associated with a parallel solver. By using the parallel solver, we can enhance the capability of computational power for two- and three-dimensional fluid-solid interaction simulations. The scalability results show that the speedup performance for two-dimensional and three-dimensional test cases are almost the same, except when the number of processors increases to 32 where two-dimensional case has better performance. However, the overall scalability for both cases deviates
from the theoretical values. There is still much room for improving the parallel efficiency.
1 Introduction
1.1 Introduction
1.2 Literature Survey
1.3 Objectives and Motivations
2 Numerical Methods
2.1 Methodology of the Immersed-Boundary Method
2.1.1 Mathematical Formulation
2.1.2 Numerical Scheme
2.1.3 Forcing Strategies
2.2 Determinations of lift and drag forces
2.3 Determinations of particle’s collision force
2.4 Complete solution procedure
3 Numerical Results
3.1 Code validation
3.2 Flow over an asymmetrically-placed cylinder
3.3 In-line oscillating cylinder in fluid at rest
3.4 Simulation of a sphere settling under gravity
3.4.1 Lubrication Force
3.5 Two spheres sedimenting in a closed container filled with a viscous fluid
3.6 Parallel Efficiency
4 Conclusions
[1] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156 (1999): 209-240.
[2] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Siam J. Number. Anal. 1994 156:209
[3] R.J. LeVeque, Z. Li, The immersed interface method for eStokes flow with elastic boundaries or surface tension. Siam J. Dci. Comput. 1997 18:709.
[4] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 2002 176:231
[5] Z. Li, M.C. Lai, The ommersed interface method for the Navier-Stokes equations with singular forces. J. Comp. Phys. 2001 171:822
[6] Z. Li, An overview of the immersed interface method and its applications. Twaiwanese J. Math 2003 7:1
[7] C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comp. Phys. 1972 10:252
[8] C.S. Peskin, The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. Annual Review of Fluid Mechanics 1982 14:235
[9] R.P. Beyer, R.L. LeVeque, Analysis of a one-dimensional model for the immersed boundary method. Siam J. Number Anal. 1992 29:332
[10] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comp. Phy. 2000 160:705
[11] D. Glodstein, R. Handler, L. Sirovich, Modeling a no-slip flow with an external force field. J. Comp. Phys. 1993 105:354
[12] D. Glodstein, R. Handler, L. Sirovich Direct numerical simulation of turlent flow over a modeled riblet covered surface. J. Fluid Mech. 1995 302:333
[13] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of twodimensional
flow over a circular cylinder using the immersed boundary method. J. Comp. Phys. 2003 189:351
[14] E.M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow : application of a virtual boundary method. J. COmp. Phys. 1996 123:450
[15] R. Mittal, G. Iaccarino, Immersed boundary methods. Annual Review of Fluid Mechanics 2005 37:239-261
[16] J. Mohd-Yusof, Combined immersed boundary/B-Spline method for simulationsof flows in complex geometries in complex geometries CTR annual research briefs. NASA Ames/Stanford University; 1997
[17] R. Verzicco, J.Mohd-Yusof, P.Orlandi, D. Haworth, LES in complex geometries using boundary body forces. AIAA Journal 2000; 38:427-433
[18] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed boundary methods for three dimensional complex flow simulations. J. Comp. Phys. 2000;161:30
[19] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computer and Fluids 2004;33:375-404
[20] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary boundary method for flow in complex geometry. J. Comp. Phys. 2003; 192:593
[21] J. Kim, D. Kim, H. Choi, An immersed boundary finite volume method for simulations of flow in complex geometries. J. Comp. Phys. 2001;171:132
[22] S.W. Su, M.C. Lai, C.A. Lin, A simple immersed boundary technique for simulating amplex flows with rigid boundary. Com. and Fluids 2007;36:313- 324
[23] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 2006;215:12-24
[24] M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. J. Numer. Meth. Fluids 2005;48:691-722
[25] H.S. Udaykumar, R. MIttal, W. Shyy, Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comp. Phys. 1999;535-574
[26] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comp. Phys. 2001;174:345-380
[27] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar, Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 2005;210:1-31
[28] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body. J. Comp. Phys. 2006;212:662-680
[29] S. Xu, Z.J.Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries. J. Comp. Phys. 2006;216:454-493
[30] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictious domain approach to the direct numerical simulation of imcompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comp. Phys. 169 2001
363-426
[31] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comp. Phys. 195 2004 602-628
[32] J. Yang, F. Stern, A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows. Journal of Fluids Engineering Vol.136 040904-1
[33] W.P. Breugem, 2012, A Second-Order Accurate Immersed Boundary Method for Fully Resolved Simulations of Particle-Laden Flows, J. Comp. Phys., 231(13), pp. 4469-4498.
[34] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar. Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210 (2005) 1-31.
[35] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176 (2002): 231-275.
[36] Z. Li, C. Wang. A Fast Finite Differenc Method For Solving Navier-Stokes Equations on Irregular Domains. Comm. Math. Sci. 1 (2003): 180-196.
[37] D.V Le, B.C. Khoo, J. Peraire. An immersed interface method for the incompressible Navier-Stokes equations in irregular domains, Proceedings of the third MIT conference on computational fluid and solid mechanics, 710, Elsevier Science, Jane 2005.
[38] D. Russell, Z.J. Wang. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. J. Comput. Phys. 191 (2003): 177-205.
[39] M. Schafer, S. Turek. The benchmark problem flow around a cylinder. In Flow Simulation with High-Performance Computer II, Hirschel EH (ed.). Notes in Numerical Fluid Mechanics, 52(Vieweg, Braunschweig, 1996) 547-566.
[40] D.J. Chen, K.h. Lin, C.A. Lin, Immersed boundary method based lattice Boltzmann method to simulate 2d and 3d complex geometry flows, Int. J. Mod. Phys. C 18 (2007) 585-594.
[41] J.I. Choi, R.C. Oberoi, J.R. Edwards, K.A. Rosati, An immersed boundary method for complex incompressible flows, J. Comput. Phys. 244 (2007) 757-784.
[42] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Lowe-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech. 360 (1998) 249-271.
[43] A. ten Cate, C.H. Nieuwstad, J.J. Derksen, H.E. A Van den Akker, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14 (2002) 4012-4025.
[44] Z.G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys. 202 (2005) 251.
[45] A.J.C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids 9, 491 (1977).
[46] C.E. Pearson, A computational method for time dependent two dimensional incompressible viscous flow problems Report No. SRRC-RR-64-17. Sudbury(MA): Sperry Rand Reasearch Center; 1964.
[47] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough, “Simulating flows with moving rigid boundary using immersed-boundary method.“ Computers & Fluids, Vol 39, 2010, pp.152-167.
[48] P.H. Chang, C.C. Liao , H.W. Hsu , S.H. Liu and C.A. Lin, Simulations of laminar and turbulent flows over periodic hills with immersed boundary method, Computers and Fluids, Vol 92, 2014, pp. 233-243
[49] H. Choi, P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys. 113 (1994) 1-4.
[50] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. phys. 59 (1985) 308-323.
[51] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. phys. 85 (1989) 257-283.
[52] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin, A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers and Fluids,45 (2011) 138-146.
[53] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010) < http : //www.mcs.anl.gov/petsc >.
[54] M.N Chang, A parallel multilevel presondidioned iterative pressure Poisson solver for 3D lid-driven cavity. Master thesis, Department of Mechanical Engineering, National Tsing Hua University (2013)
[55] Y. Saad, Iterative methods for sparse linear system. Second ed., Philadelphia: SIAM (2004).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *