帳號:guest(3.141.198.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):瞿紹任
作者(外文):Chu, Shao-Jen
論文名稱(中文):磁致冷復熱器之性能提升設計
論文名稱(外文):Designs for Improving the Performance of Active Magnetic Regenerator
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):李隆正
簡國祥
口試委員(外文):Lung-Cheng Lee
Kuo-Hsiang Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033505
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:87
中文關鍵詞:AMR磁致冷復熱器絕熱段磁熱材料
外文關鍵詞:active magnetic regeneratoradiabatic segmentmagnetocaloric material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
  關於磁致冷復熱器(AMR)的相關研究過去多未考量熱能在熱端與冷端之間直接經由金屬磁熱材料進行傳遞造成的效能下降,因此,本研究由阻斷材料中的熱能傳遞著手,藉由設置低熱傳導率的區域作為絕熱段並配置於磁熱材料之中,使熱能無法經由磁熱材料在冷、熱端之間傳遞,以此提升AMR之效能。同時,研究過程中改變絕熱段之長度、數量與位置,並在不同的週期、溫差等參數條件下進行測試,藉以了解性能改善之狀況以及各參數間的相互影響,使AMR的性能最佳化。研究以COMSOL Multiphysics模擬軟體進行,並簡化AMR之結構,以一維暫態模型進行模擬分析。模擬採用的磁致冷裝置為往復式AMR,磁熱材料為Gd平板,工作流體為水,磁場強度1 T。
  研究分別在固定孔隙率和固定材料厚度的設置下進行,結果顯示,在各種參數條件下,絕熱段的設置皆可使AMR的性能提升,提升的幅度則與絕熱段本身的設計和參數條件有關。多數情況下,絕熱段長度越長、數量越多,AMR的性能提升幅度越大;而將絕熱段之位置設在冷端與復熱器中點的中間附近,通常會有較大的提升效果。另外,當AMR的週期較長、溫差較大時,絕熱段的提升效果較明顯;而AMR溫差越大,最佳操作週期則越長,並會受到材料片數(總表面積)的影響。固定孔隙率與固定材料厚度的結果相似,惟固定厚度下磁熱材料總質量隨材料片數增加而增加,因此冷凍能力與其提升量隨著片數變化的趨勢與固定孔隙率不同。研究結果並顯示,在固定厚度下,質量流率若配合材料總質量改變,使利用因數維持在1 ~ 1.6附近,則定溫差下AMR的冷凍能力最大。
Most of previous researches about active magnetic regenerators (AMR) didn’t pay much attention to the effects of conduction heat transfer between the hot end and the cold end through the magnetocaloric material in AMR on the efficiency of cooling. For an increase in efficiency, the work here investigates this point with an introduction of adiabatic segments inserted into the magnetocaloric material to prevent the heat conduction through it. The length, number and positon of adiabatic segments under various system parameters are analyzed numerically to improve the cooling performance of AMR. A simplified 1-D transient model of AMR is adopted and solved by COMSOL Multiphysics. The AMR model is a reciprocating type with Gd plates as magnetocaloric material and water as working fluid. The maximum magnetic field is 1 T.
The numerical simulation is done under the conditions of constant porosity and constant thickness of Gd plates. The results show that the adiabatic segments can improve the cooling performance of AMR. For most cases, longer and more segments lead to a better performance. In addition, the position of segments in the middle region between the cold end and the center of Gd plates usually provides a higher cooling power. Further, the adiabatic segments will be more effective for high temperature difference and long operating period. The parameters such as the temperature difference, the period and the number of Gd plates will interact with one another and have coupling effects on the AMR performance. The two conditions (constant porosity and constant thickness) have similar results except that the trend of the cooling power versus the number of Gd plates is different due to the total Gd mass of the latter one increasing with the number of Gd plates. Under the constant-thickness condition, a better AMR performance is achieved for the magnitude of utilization factor around 1-1.6 by adjusting the mass flow rate.
摘要 I
Abstract II
致謝 III
目錄 IV
第一章 緒論 1
1-1 前言 1
1-2 磁致冷發展概述 3
1-3 文獻回顧 5
第二章 磁致冷相關理論 14
2-1 磁熱效應與材料 14
2-1-1 相變化與磁熱效應 14
2-1-2 熱力學理論 16
2-1-3 磁熱材料 17
2-2 磁鐵 23
2-3 AMR 25
2-4 能量守恆方程式 28
第三章 數值模型 31
3-1 模擬軟體 31
3-1-1 求解器設定 31
3-2 模型與參數設定 32
3-2-1 幾何尺寸 32
3-2-2 流體與磁場循環 33
3-2-3 統御方程式 34
3-2-4 邊界條件與初始條件 34
3-2-5 熱流及其他相關參數 35
3-3 性能改善設計與研究項目 39
3-3-1 絕熱區段 39
3-3-2 溫差與週期的影響 39
3-3-3 固定厚度與固定孔隙率 40
3-4 數值與性能評估 40
第四章 結果與討論 42
4-1 固定孔隙率 43
4-1-1 絕熱段的長度、數量與位置 43
4-1-1-1 絕熱段的長度 43
4-1-1-2 絕熱段的數量 46
4-1-1-3 絕熱段的位置 48
4-1-1-4 共通結果 54
4-1-2 溫差的影響 59
4-1-3 週期的影響 62
4-2 固定材料厚度 68
4-2-1 基本差異 68
4-2-2 絕熱段的影響 69
4-2-3 溫差的影響 75
4-2-4 週期的影響 77
4-2-5 利用因數與性能的關係 81
第五章 結論與未來展望 84
5-1 結論 84
5-2 未來展望 85
參考文獻 86
[1] K. A. Gschneidner, Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” International Journal of Refrigeration, Vol. 31, pp. 945-961, 2008.
[2] V. K. Pecharsky and K. A. Gschneidner, Jr., “Giant Magnetocaloric Effect in Gd5(Si2Ge2),” Physical Review Letters, Vol. 78, pp. 4484-4497, 1997a.
[3] B. Yu, M. Liu, P. W. Egolf and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” International Journal of Refrigeration, Vol. 33, pp. 1029-1060, 2010.
[4] A. Rowe and A. Tura, “Experimental investigation of a three-material layered active magnetic regenerator,” International Journal of Refrigeration, Vol. 29, pp. 1286-1293, 2006.
[5] A. Rowe and A. Tura, “Active magnetic regenerator performance enhancement using passive magnetic materials,” Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 1357–1363, 2008.
[6] A. Tura and A. Rowe, "Permanent magnet magnetic refrigerator design and experimental characterization," International Journal of Refrigeration, Vol. 34, pp. 628-639, 2011.
[7] K. Engelbrecht, D. Eriksen, C. R. H. Bahl, R. Bjørk, J. Geyti, J. A. Lozano, K. K. Nielsen, F. Saxild, A. Smith and N. Pryds, “Experimental results for a novel rotary active magnetic regenerator,” International Journal of Refrigeration, Vol. 35, pp. 1498-1505, 2012.
[8] K. Engelbrecht, J. Tušek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl and A. Poredoš, “Improved modelling of a parallel plate active magnetic regenerator,” Journal of Physics D: Applied Physics, Vol. 46, 2013.
[9] J. Tušek, A. Kitanovski, U. Tomc, C. Favero and A. Poredoš, “Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator,” International Journal of Refrigeration, Vol. 37, pp. 117-126, 2014.
[10] D. S. Arnold, A. Tura, A. Ruebsaat-Trott and A. Rowe, “Design improvements of a permanent magnet active magnetic refrigerator,” International Journal of Refrigeration, Vol. 37, pp. 99-105, 2014.
[11] C. Aprea, A. Greco, A. Maiorino, R. Mastrullo and A. Tura, “Initial experimental results from a rotary permanent magnet magnetic refrigerator,” International Journal of Refrigeration, 2014.
[12] V. K. Pecharsky, K. A. Gschneidner, Jr., A. O. Pecharsky and A. M. Tishin, “Thermodynamics of the magnetocaloric effect,” Physical Review B, Vol. 64, pp. 144406, 2001.
[13] B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng and Z. Chen, "Review on research of room temperature magnetic refrigeration," International Journal of Refrigeration, Vol. 26, pp. 622-636, 2003.
[14] E. Brück, "Developments in magnetocaloric refrigeration," Journal of Physics D: Applied Physics, Vol. 38, pp. R381-R391, 2005.
[15] V. Provenzano, A. J. Shapiro and R. D. Shull, “Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron,” Nature, Vol. 429, pp. 853–857, 2004.
[16] K. A. Gschneidner, Jr., V. K. Pecharsky and A. O. Tsokol, "Recent developments in magnetocaloric materials," Reports on Progress in Physics, Vol. 68, pp. 1479-1539, 2005.
[17] F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao and X. X. Zhang, “Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6,” Applied Physics Letters, Vol. 78, pp. 3675-3677, 2001.
[18] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore and O. Gutfleisch, "Giant magnetocaloric effect driven by structural transitions," Nature Materials, Vol. 11, pp. 620-626, 2012.
[19] 楊政瑜及蘇琨祥, “無刷電動機結構設計與特性分析,” 工程科技與教育學刊, 第五卷, 第425-445頁, 民國九十七年.
[20] K&J magnetics, Inc., “Halbach Arrays,” Available: http://www.kjmagnetics.com/blog.asp?p=halbach-arrays.
[21] T. F. Petersen, N. Pryds, A. Smith, J. Hattel, H. Schmidt and H. H. Knudsen, "Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator," International Journal of Refrigeration, Vol. 31, pp. 432-443, 2008.
[22] 吳俊億, “磁制冷卻系統之性能模擬研究,” 碩士論文, 國立清華大學, 民國一百零二年.
[23] C. R. H. Bahl, T. F. Petersen, N. Pryds and A. Smith, "A versatile magnetic refrigeration test device," Review of Scientific Instruments, Vol. 79, pp. 093906, 2008.
[24] M. Nickolay and H. Martin, "Improved approximation for the Nusselt number for hydrodynamically developed laminar flow between parallel plates," International Journal of Heat and Mass Transfer, Vol. 45, pp. 3263-3266, 2002.
[25] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers, Plenum Press, New York, 1997.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *