帳號:guest(18.117.230.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李國安
作者(外文):Li, Guo An
論文名稱(中文):運用超臨界流體合成法合成出磷化銅奈米線並於能量儲存裝置上之相關應用
論文名稱(外文):supercritical fluid synthesis of copper diphosphide nanowires for energy storage applications
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing Yu
口試委員(中文):周更生
曾院介
袁芳偉
張恕豪
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032806
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:半導體奈米線磷化銅鋰電池電晶體
外文關鍵詞:semicondutor nanowirecopper diphosphideLIBstransistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:543
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用超臨界流體合成法(SFLS)合成出高品質的磷化銅(CuP2)奈米線,並且應用在鋰、鈉離子電池(lithium/sodium ion batteries)以及電晶體元件上面。於鋰離子電池,經碳化燒結處理的磷化銅奈米線所製備的陽極電極,第一圈充、放電比電容量(charge /discharge specific capacity) 擁有1689和1075 mA h g-1,庫倫效率(coulombic efficiency) 為64%。再經過100次充放電循環後的比電容量維持945 mA h/g,電容量保持率(capacity retention)維持在88%。即使是在電流密度(current density) 6C,電極仍具有突出的表現,比電容量約〜700 mA h g-1,遠高於一般商業負極材料-石墨比電容量(372 mA h g-1)。最後,我們將負極材料磷化銅奈米線搭配業界常用的正極材料磷酸鋰鐵(LiFePO4),以疊片式組成鈕釦型(coin cell)以及軟包式全電池,進行概念性運用。
由於鋰離子電池的需求量逐年增加,導致鋰金屬原料供不應求,價格急遽上漲。未來方向必定是找尋高富含量(earth abundance)的替代材料作為電池中傳導的離子。鈉離子電池是目前最為可行性的選項之一。同樣,我們將先前碳化燒結處理的磷化銅奈米線製備成負極電極並運用於其中,經過100次充放電循環後比電容量維持在975 mA h g-1,比電容量維持率為95%。表現出不輸給鋰離子電池的電化學特性。
在電晶體元件測試中,透過電流-電壓曲線圖我們計算出磷化銅奈米線電阻率(resistivity)為7.9×10-3 Ω*m。同時利用單根磷化銅奈米線場效電晶體(field effect transistor)測試,結果顯示具有p型行為,開/關比(on/off ratio)大於104。
Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid−liquid−solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 104 and its single nanowire electrical transport property exhibits a hole mobility of 147 cm2 V−1 s−1, representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g−1 after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g−1. Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars. However, due to increasing demand for lithium-ion batteries, lithium metal on earth cannot meet the need so that the price of lithium increases year by year. Future work must be looking for high abundance of alternative materials as ion conduction of battery. Sodium ion battery is currently one of the most feasible option. We applied previously calcined copper phosphide nanowires to sodium ion batteries, and electrochemical results shows that capacity possesses 975 mA h g-1 after 100 charge/discharge cycle, with retention 95%.
中文摘要 1
Abstract 2
Table of Contents 4
List of Tables 6
List of Figures 7
Chapter 1. Thesis Introduction 12
1.1 Semiconductor Nanowires 12
1.1.1 Semiconductor Nanowires Synthesis 12
1.1.2 Reference 14
1.2 Introduction on transition-metal phosphides 16
1.2.1 Transition-metal phosphides 16
1.2.2 Copper phosphide 17
1.2.3 Reference 19
1.3 Introduction on Lithium-ion Batteries 23
1.3.1 Lithium-ion Batteries 23
1.3.2 Anode nanomaterials of Lithium Ion Batteries 25
1.3.3 Phosphide as anode material of Lithium ion Batteries 29
1.3.4 Reference 31
1.4 Introduction on Sodium-ion Batteries 36
1.4.1 Sodium-ion Batteries 36
1.4.2 Anode materials of Sodium Ion Batteries 37
1.4.3 Reference 41
Chapter 2. Experimental Section 43
2.1 Materials 43
2.2 CuP2 Nanowires Synthesis and Characterization 43
2.3 Lithium-ion Batteries Assembly and Electrochemical Characterization 46
2.3.1 Coin Cell Assembly and Characterization 46
2.3.2 Pouch-type Full Cell Assembly 47
2.3.3 Sodium-ion Batteries Assembly 47
Chapter 3. Result and Discussion 49
3.1 CuP2 Nanowires Characterization 49
3.2 CuP2 Nanowires Lithium-ion Batteries 57
3.2.1 Electrochemical Performance 57
3.2.2 Mechanism 67
3.2.3 Full cell test and Application 72
3.3 CuP2 Nanowires Sodium Ion Batteries 77
3.4 Field Effect Transistor 82
Chapter 4. Conclusion 85

一.
1. Suzuki, R.; Nozue, M.; Saraya, T.; Hiramoto, T., Experimental Observation of Quantum Confinement Effect in < 110 > and < 100 > Silicon Nanowire Field-Effect Transistors and Single-Electron/Hole Transistors Operating at Room Temperature. Japanese Journal of Applied Physics 2013, 52, (10).
2. Yi, K. S.; Trivedi, K.; Floresca, H. C.; Yuk, H.; Hu, W.; Kim, M. J., Room-Temperature Quantum Confinement Effects in Transport Properties of Ultrathin Si Nanowire Field-Effect Transistors. Nano Letters 2011, 11, (12), 5465-5470.
3. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353-389.
4. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ). Applied Physics Letters 1964, 4, (5), 89-&.
5. Duan, X. F.; Lieber, C. M., General synthesis of compound semiconductor nanowires. Advanced Materials 2000, 12, (4), 298-302.
6. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, (5243), 1791-1794.
7. Wu, Y. Y.; Yang, P. D., Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society 2001, 123, (13), 3165-3166.
8. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, (5457), 1471-1473.
9. Lu, X. M.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Growth of single crystal nanowires in supercritical silicon solution from tethered gold particles on a silicon substrate. Nano Letters 2003, 3, (1), 93-99.
10. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. Journal of the American Chemical Society 2002, 124, (7), 1424-1429.

二.1. Schrey, F.; Boone, T.; Nakahara, S.; Robbins, M.; Appelbaum, A., Structure of Sputtered Ni2p Films. Thin Solid Films 1987, 149, (3), 303-311.
2. Mushonga, P.; Onani, M. O.; Madiehe, A. M.; Meyer, M., Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications. Journal of Nanomaterials 2012.
3. Bhattacharya, I.; Foo, S. Y., Effects of Gallium-Phosphide and Indium-Gallium-Antimonide Semiconductor Materials on Photon Absorption of Multijunction Solar Cells. Ieee Southeastcon 2010: Energizing Our Future 2010, 316-319.
4. Koster, E.; Turrell, B. G., Nuclear Magnetic-Resonance in Ferromagnetic Fe2p. Canadian Journal of Physics 1973, 51, (8), 830-836.
5. corrosion-resistantIshida, S.; Asano, S.; Ishida, J., Electronic-Structures and Magnetic-Properties of Mn2p, Fe2p, Ni2p. Journal of Physics F-Metal Physics 1987, 17, (2), 475-482.
6. Zeppenfeld, K.; Jeitschko, W., Magnetic-Behavior of Ni3p, Ni2p, Nip3 and the Series Ln2ni12p7 (Ln=Pr, Nd, Sm, Gd-Lu). Journal of Physics and Chemistry of Solids 1993, 54, (11), 1527-1531.
7. Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L., Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy & Environmental Science 2014, 7, (5), 1628-1632.
8. Song, H.; Dai, M.; Song, H. L., Ni2P Catalyst for Hydrodesulfurization. Progress in Chemistry 2012, 24, (5), 757-768.
9. Kawai, T.; Bando, K. K.; Lee, Y. K.; Oyama, S. T.; Chun, W. J.; Asakura, K., EXAFS measurements of a working catalyst in the liquid phase: An in situ study of a Ni2P hydrodesulfurization catalyst. Journal of Catalysis 2006, 241, (1), 20-24.
10. Liu, S. L.; Qian, Y. T.; Xu, L. Q., Synthesis and characterization of hollow spherical copper phosphide (Cu3P) nanopowders. Solid State Communications 2009, 149, (11-12), 438-440.
11. Lewkebandara, T. S.; Winter, C. H., Thin films of early transition metal monophosphides. Chemical Vapor Deposition 1996, 2, (2), 75-77.
12. Bihler, C.; Kraus, M.; Huebl, H.; Brandt, M. S.; Goennenwein, S. T. B.; Opel, M., Magnetocrystalline anisotropy and magnetization reversal in Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting. Physical Review B 2007, 75, (21).
13. Booth, R. A.; Majetich, S. A., Crystallographic orientation and the magnetocaloric effect in MnP. Journal of Applied Physics 2009, 105, (7).
14. Boyanov, S.; Bernardi, J.; Gillot, F.; Dupont, L.; Womes, M.; Tarascon, J. M.; Monconduit, L.; Doublet, M. L., FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chemistry of Materials 2006, 18, (15), 3531-3538.
15. Boyanov, S.; Zitoun, D.; Menetrier, M.; Jumas, J. C.; Womes, M.; Monconduit, L., Comparison of the Electrochemical Lithiation/Delitiation Mechanisms of FePx (x=1, 2, 4) Based Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C 2009, 113, (51), 21441-21452.
16. KimOdile, J. P.; Soled, S.; Castro, C. A.; Wold, A., Crystal-Growth and Characterization of Transition-Metal Phosphides Cup2, Nip2, and Rhp3. Inorganic Chemistry 1978, 17, (2), 283-286.
17. Kim, M. G.; Lee, S.; Cho, J., Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries. Journal of the Electrochemical Society 2009, 156, (2), A89-A94.
18. Pralong, V.; Souza, D. C. S.; Leung, K. T.; Nazar, L. F., Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochemistry Communications 2002, 4, (6), 516-520.
19. Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F., A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 2002, 296, (5575), 2012-2015.
20. Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; Safa-Sefat, A.; Nazar, L. F., Reversible lithium uptake by FeP2. Electrochemical and Solid State Letters 2003, 6, (8), A162-A165.
21. Wang, K.; Yang, J.; Xie, J. Y.; Wang, B. F.; Wen, Z. S., Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochemistry Communications 2003, 5, (6), 480-483.
22. Hayashi, A.; Inoue, A.; Tatsumisago, M., Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries. Journal of Power Sources 2009, 189, (1), 669-671.
23. Boyanov, S.; Bernardi, J.; Bekaert, E.; Menetrier, M.; Doublet, M. L.; Monconduit, L., P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries. Chemistry of Materials 2009, 21, (2), 298-308.
24. Shields, V. B.; Caillat, T., Synthesis and thermoelectric properties of CoP3. Thermoelectric Materials 2001-Research and Applications 2001, 691, 55-62.
25. Moller, M. H.; Jeitschko, W., Preparation, Properties, and Crystal-Structure of Cu2p7 and Structure Refinements of Cup2 and Agp2. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1982, 491, (8), 225-236.
26. Alemany, P.; Alvarez, S.; Whangbo, M. H.; Evain, M., Electronic-Structure, Bonding, and Properties of Cup2. Inorganic Chemistry 1992, 31, (1), 119-124.
27. Kloc, C.; Luxsteiner, M. C.; Keil, M.; Baumann, J. R.; Doll, G.; Bucher, E., Growth and Characterization of Cup2 Single-Crystals. Journal of Crystal Growth 1990, 106, (4), 635-642.
28. Goryunov.Na; Orlov, V. M.; Sokolova, V. I.; Shpenkov, G. P.; Tsvetkov.Ev, Preparation and Some Properties of Cup2 Single Crystals. Physica Status Solidi 1968, 25, (2), 513.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *