|
一. 1. Suzuki, R.; Nozue, M.; Saraya, T.; Hiramoto, T., Experimental Observation of Quantum Confinement Effect in < 110 > and < 100 > Silicon Nanowire Field-Effect Transistors and Single-Electron/Hole Transistors Operating at Room Temperature. Japanese Journal of Applied Physics 2013, 52, (10). 2. Yi, K. S.; Trivedi, K.; Floresca, H. C.; Yuk, H.; Hu, W.; Kim, M. J., Room-Temperature Quantum Confinement Effects in Transport Properties of Ultrathin Si Nanowire Field-Effect Transistors. Nano Letters 2011, 11, (12), 5465-5470. 3. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353-389. 4. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ). Applied Physics Letters 1964, 4, (5), 89-&. 5. Duan, X. F.; Lieber, C. M., General synthesis of compound semiconductor nanowires. Advanced Materials 2000, 12, (4), 298-302. 6. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, (5243), 1791-1794. 7. Wu, Y. Y.; Yang, P. D., Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society 2001, 123, (13), 3165-3166. 8. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, (5457), 1471-1473. 9. Lu, X. M.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Growth of single crystal nanowires in supercritical silicon solution from tethered gold particles on a silicon substrate. Nano Letters 2003, 3, (1), 93-99. 10. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. Journal of the American Chemical Society 2002, 124, (7), 1424-1429.
二.1. Schrey, F.; Boone, T.; Nakahara, S.; Robbins, M.; Appelbaum, A., Structure of Sputtered Ni2p Films. Thin Solid Films 1987, 149, (3), 303-311. 2. Mushonga, P.; Onani, M. O.; Madiehe, A. M.; Meyer, M., Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications. Journal of Nanomaterials 2012. 3. Bhattacharya, I.; Foo, S. Y., Effects of Gallium-Phosphide and Indium-Gallium-Antimonide Semiconductor Materials on Photon Absorption of Multijunction Solar Cells. Ieee Southeastcon 2010: Energizing Our Future 2010, 316-319. 4. Koster, E.; Turrell, B. G., Nuclear Magnetic-Resonance in Ferromagnetic Fe2p. Canadian Journal of Physics 1973, 51, (8), 830-836. 5. corrosion-resistantIshida, S.; Asano, S.; Ishida, J., Electronic-Structures and Magnetic-Properties of Mn2p, Fe2p, Ni2p. Journal of Physics F-Metal Physics 1987, 17, (2), 475-482. 6. Zeppenfeld, K.; Jeitschko, W., Magnetic-Behavior of Ni3p, Ni2p, Nip3 and the Series Ln2ni12p7 (Ln=Pr, Nd, Sm, Gd-Lu). Journal of Physics and Chemistry of Solids 1993, 54, (11), 1527-1531. 7. Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L., Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy & Environmental Science 2014, 7, (5), 1628-1632. 8. Song, H.; Dai, M.; Song, H. L., Ni2P Catalyst for Hydrodesulfurization. Progress in Chemistry 2012, 24, (5), 757-768. 9. Kawai, T.; Bando, K. K.; Lee, Y. K.; Oyama, S. T.; Chun, W. J.; Asakura, K., EXAFS measurements of a working catalyst in the liquid phase: An in situ study of a Ni2P hydrodesulfurization catalyst. Journal of Catalysis 2006, 241, (1), 20-24. 10. Liu, S. L.; Qian, Y. T.; Xu, L. Q., Synthesis and characterization of hollow spherical copper phosphide (Cu3P) nanopowders. Solid State Communications 2009, 149, (11-12), 438-440. 11. Lewkebandara, T. S.; Winter, C. H., Thin films of early transition metal monophosphides. Chemical Vapor Deposition 1996, 2, (2), 75-77. 12. Bihler, C.; Kraus, M.; Huebl, H.; Brandt, M. S.; Goennenwein, S. T. B.; Opel, M., Magnetocrystalline anisotropy and magnetization reversal in Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting. Physical Review B 2007, 75, (21). 13. Booth, R. A.; Majetich, S. A., Crystallographic orientation and the magnetocaloric effect in MnP. Journal of Applied Physics 2009, 105, (7). 14. Boyanov, S.; Bernardi, J.; Gillot, F.; Dupont, L.; Womes, M.; Tarascon, J. M.; Monconduit, L.; Doublet, M. L., FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chemistry of Materials 2006, 18, (15), 3531-3538. 15. Boyanov, S.; Zitoun, D.; Menetrier, M.; Jumas, J. C.; Womes, M.; Monconduit, L., Comparison of the Electrochemical Lithiation/Delitiation Mechanisms of FePx (x=1, 2, 4) Based Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C 2009, 113, (51), 21441-21452. 16. KimOdile, J. P.; Soled, S.; Castro, C. A.; Wold, A., Crystal-Growth and Characterization of Transition-Metal Phosphides Cup2, Nip2, and Rhp3. Inorganic Chemistry 1978, 17, (2), 283-286. 17. Kim, M. G.; Lee, S.; Cho, J., Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries. Journal of the Electrochemical Society 2009, 156, (2), A89-A94. 18. Pralong, V.; Souza, D. C. S.; Leung, K. T.; Nazar, L. F., Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochemistry Communications 2002, 4, (6), 516-520. 19. Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F., A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 2002, 296, (5575), 2012-2015. 20. Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; Safa-Sefat, A.; Nazar, L. F., Reversible lithium uptake by FeP2. Electrochemical and Solid State Letters 2003, 6, (8), A162-A165. 21. Wang, K.; Yang, J.; Xie, J. Y.; Wang, B. F.; Wen, Z. S., Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochemistry Communications 2003, 5, (6), 480-483. 22. Hayashi, A.; Inoue, A.; Tatsumisago, M., Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries. Journal of Power Sources 2009, 189, (1), 669-671. 23. Boyanov, S.; Bernardi, J.; Bekaert, E.; Menetrier, M.; Doublet, M. L.; Monconduit, L., P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries. Chemistry of Materials 2009, 21, (2), 298-308. 24. Shields, V. B.; Caillat, T., Synthesis and thermoelectric properties of CoP3. Thermoelectric Materials 2001-Research and Applications 2001, 691, 55-62. 25. Moller, M. H.; Jeitschko, W., Preparation, Properties, and Crystal-Structure of Cu2p7 and Structure Refinements of Cup2 and Agp2. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1982, 491, (8), 225-236. 26. Alemany, P.; Alvarez, S.; Whangbo, M. H.; Evain, M., Electronic-Structure, Bonding, and Properties of Cup2. Inorganic Chemistry 1992, 31, (1), 119-124. 27. Kloc, C.; Luxsteiner, M. C.; Keil, M.; Baumann, J. R.; Doll, G.; Bucher, E., Growth and Characterization of Cup2 Single-Crystals. Journal of Crystal Growth 1990, 106, (4), 635-642. 28. Goryunov.Na; Orlov, V. M.; Sokolova, V. I.; Shpenkov, G. P.; Tsvetkov.Ev, Preparation and Some Properties of Cup2 Single Crystals. Physica Status Solidi 1968, 25, (2), 513.
|