|
[1] C. C. Berry, S. Wells, S. Charles, G. Aitchison, and A. S. Curtis, "Cell response to dextran-derivatised iron oxide nanoparticles post internalisation," Biomaterials, vol. 25, pp. 5405-13, Oct 2004. [2] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, vol. 26, pp. 3995-4021, Jun 2005. [3] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, "Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy," Adv Drug Deliv Rev, vol. 63, pp. 24-46, Jan-Feb 2011. [4] N. Singh, G. J. Jenkins, R. Asadi, and S. H. Doak, "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)," Nano Rev, vol. 1, 2010. [5] C. H. Cunningham, T. Arai, P. C. Yang, M. V. McConnell, J. M. Pauly, and S. M. Conolly, "Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles," Magn Reson Med, vol. 53, pp. 999-1005, May 2005. [6] H. Y. Yoon, G. Saravanakumar, R. Heo, S. H. Choi, I. C. Song, M. H. Han, et al., "Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy," J Control Release, vol. 160, pp. 692-8, Jun 28 2012. [7] V. I. Shubayev, T. R. Pisanic, 2nd, and S. Jin, "Magnetic nanoparticles for theragnostics," Adv Drug Deliv Rev, vol. 61, pp. 467-77, Jun 21 2009. [8] D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, and M. Toyoda, "Application of magnetic nanoparticles to gene delivery," Int J Mol Sci, vol. 12, pp. 3705-22, 2011. [9] S. Naqvi, M. Samim, M. Abdin, F. J. Ahmed, A. Maitra, C. Prashant, et al., "Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress," Int J Nanomedicine, vol. 5, pp. 983-9, 2010. [10] G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, et al., "Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy," Theranostics, vol. 3, pp. 116-26, 2013. [11] T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, et al., "Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles," Nat Nanotechnol, vol. 6, pp. 175-8, Mar 2011. [12] J. Wang and K. Pantopoulos, "Regulation of cellular iron metabolism," Biochem J, vol. 434, pp. 365-81, Mar 15 2011. [13] E. K. Schlachter, H. R. Widmer, A. Bregy, T. Lonnfors-Weitzel, I. Vajtai, N. Corazza, et al., "Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study," Int J Nanomedicine, vol. 6, pp. 1793-800, 2011. [14] A. S. Arbab, L. B. Wilson, P. Ashari, E. K. Jordan, B. K. Lewis, and J. A. Frank, "A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging," NMR Biomed, vol. 18, pp. 383-9, Oct 2005. [15] T. Kolter and K. Sandhoff, "Lysosomal degradation of membrane lipids," FEBS Lett, vol. 584, pp. 1700-12, May 3 2010. [16] H. Schulze, T. Kolter, and K. Sandhoff, "Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation," Biochim Biophys Acta, vol. 1793, pp. 674-83, Apr 2009. [17] H. Zoller, I. Theurl, R. Koch, A. Kaser, and G. Weiss, "Mechanisms of Iron Mediated Regulation of the Duodenal Iron Transporters Divalent Metal Transporter 1 and Ferroportin 1," Blood Cells, Molecules, and Diseases, vol. 29, pp. 488-497, 2002. [18] Q. Liu, U. Berchner-Pfannschmidt, U. Moller, M. Brecht, C. Wotzlaw, H. Acker, et al., "A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression," Proc Natl Acad Sci U S A, vol. 101, pp. 4302-7, Mar 23 2004. [19] J. A. Lemire, J. J. Harrison, and R. J. Turner, "Antimicrobial activity of metals: mechanisms, molecular targets and applications," Nat Rev Microbiol, vol. 11, pp. 371-84, Jun 2013. [20] S. Wang, "A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater," Dyes and Pigments, vol. 76, pp. 714-720, 2008. [21] H. C. Isom, E. I. McDevitt, and M. S. Moon, "Elevated hepatic iron: a confounding factor in chronic hepatitis C," Biochim Biophys Acta, vol. 1790, pp. 650-62, Jul 2009. [22] A. Catala, "Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions," Chem Phys Lipids, vol. 157, pp. 1-11, Jan 2009. [23] E. Niki, "Lipid peroxidation: physiological levels and dual biological effects," Free Radic Biol Med, vol. 47, pp. 469-84, Sep 1 2009. [24] M. D. Dunning, A. Lakatos, L. Loizou, M. Kettunen, C. ffrench-Constant, K. M. Brindle, et al., "Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS," J Neurosci, vol. 24, pp. 9799-810, Nov 3 2004. [25] M. I. Khan, A. Mohammad, G. Patil, S. Naqvi, L. Chauhan, and I. Ahmad, "Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles," Biomaterials, vol. 33, pp. 1477-1488, 2012. [26] M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, and A. Petri-Fink, "Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles," Chem Rev, vol. 112, pp. 2323-38, Apr 11 2012. [27] A. Pal, A. Singh, T. C. Nag, P. Chattopadhyay, R. Mathur, and S. Jain, "Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection," Int J Nanomedicine, vol. 8, pp. 2259-72, 2013. [28] E. S. Henle, "Oxidative Damage to DNA Constituents by Iron-mediated Fenton Reactions. THE DEOXYCYTIDINE FAMILY," Journal of Biological Chemistry, vol. 271, pp. 21167-21176, 1996. [29] D. Wang, L. H. Wang, Y. Zhao, Y. P. Lu, and L. Zhu, "Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) Exon1B by hypoxia-inducible factor-1," IUBMB Life, vol. 62, pp. 629-36, Aug 2010. [30] D. S. Kalinowski and D. R. Richardson, "The evolution of iron chelators for the treatment of iron overload disease and cancer," Pharmacol Rev, vol. 57, pp. 547-83, Dec 2005. [31] E. T. Ahrens, M. Feili-Hariri, H. Xu, G. Genove, and P. A. Morel, "Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging," Magn Reson Med, vol. 49, pp. 1006-13, Jun 2003. [32] S. T. Stern, P. P. Adiseshaiah, and R. M. Crist, "Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity," Part Fibre Toxicol, vol. 9, p. 20, 2012. [33] J. Gu, H. Xu, Y. Han, W. Dai, W. Hao, C. Wang, et al., "The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell," Sci China Life Sci, vol. 54, pp. 793-805, Sep 2011. [34] I. G. Kirkinezos and C. T. Moraes, "Reactive oxygen species and mitochondrial diseases," Semin Cell Dev Biol, vol. 12, pp. 449-57, Dec 2001. [35] M. Priwitzerova, G. Nie, A. D. Sheftel, D. Pospisilova, V. Divoky, and P. Ponka, "Functional consequences of the human DMT1 (SLC11A2) mutation on protein expression and iron uptake," Blood, vol. 106, pp. 3985-7, Dec 1 2005. [36] L. J. Niedernhofer, J. S. Daniels, C. A. Rouzer, R. E. Greene, and L. J. Marnett, "Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells," J Biol Chem, vol. 278, pp. 31426-33, Aug 15 2003. [37] T. Demiral and I. Turkan, "Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance," Environmental and Experimental Botany, vol. 53, pp. 247-257, 2005. [38] A. L. Edinger and C. B. Thompson, "Death by design: apoptosis, necrosis and autophagy," Curr Opin Cell Biol, vol. 16, pp. 663-9, Dec 2004. [39] P. Golstein and G. Kroemer, "Cell death by necrosis: towards a molecular definition," Trends Biochem Sci, vol. 32, pp. 37-43, Jan 2007. [40] M. Lakadamyali, M. J. Rust, and X. Zhuang, "Endocytosis of influenza viruses," Microbes Infect, vol. 6, pp. 929-36, Aug 2004. [41] D. I. Mundy, W. P. Li, K. Luby-Phelps, and R. G. Anderson, "Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content," Mol Biol Cell, vol. 23, pp. 864-80, Mar 2012. [42] J. Huotari and A. Helenius, "Endosome maturation," EMBO J, vol. 30, pp. 3481-500, Aug 31 2011. [43] J. R. Eisenbrey, O. M. Burstein, R. Kambhampati, F. Forsberg, J. B. Liu, and M. A. Wheatley, "Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery," J Control Release, vol. 143, pp. 38-44, Apr 2 2010. [44] Dickson D. UK scientists test liposome gene therapy technique. Nature. 1993;365:4. [45] Sessa G, Weissman.G. Phospholipid Spherules (Liposomes) as a Model for Biological Membranes. J Lipid Res. 1968;9:310-&. [46] Rudolph AS. Biomaterial Biotechnology Using Self-Assembled Lipid Microstructures. J Cell Biochem. 1994;56:183-7. [47] Allen TM. Liposomal drug formulations - Rationale for development and whatwe can expect for the future. Drugs. 1998;56:747-56. [48] Osullivan J, Heads A, Hunter S. Microbubble Image-Enhancement and Pericardiocentesis. Int J Cardiol. 1993;42:95-6. [49] Haensler J, Szoka FC. Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconjugate chemistry. 1993;4:372-9. [50] Aicher A, Miller K, Reich E, Hautmann R. Photodynamic Therapy of Human Bladder-Carcinoma Cells in-Vitro with Ph-Sensitive Liposomes as Carriers for 9-Acetoxy-Tetra-N-Propylporphycene. Urol Res. 1994;22:25-32. [51] Zaru M, Manca ML, Fadda AM, Antimisiaris SG. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloid Surface B. 2009;71:88-95. [52] Jones MN. The Surface-Properties of Phospholipid Liposome Systems and Their Characterization. Adv Colloid Interfac. 1995;54:93-128. [53] Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Bba-Biomembranes. 2000;1467:39-53. [54] Cagdas FM, Ertugral N, Bucak S, Atay NZ. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes. Pharm Dev Technol. 2011;16:408-14. [55] Zasadzinski JA, Wong B, Forbes N, Braun G, Wu GH. Novel methods of enhanced retention in and rapid, targeted release from liposomes. Curr Opin Colloid In. 2011;16:203-14.
|