帳號:guest(18.225.234.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂祥銘
論文名稱(中文):四氧化三鐵於細胞內不同胞器內釋放所產生之細胞毒性機制探討
論文名稱(外文):Intracellular Organelle-dependent Cytotoxicity of Superparamagnetic Iron Oxides Nanoparticles
指導教授(中文):宋信文
口試委員(中文):邱信程
陳三元
王麗芳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032564
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:四氧化三鐵氫氧自由基微脂體pH值定點釋放
外文關鍵詞:SPIONshydroxyl radicalsliposomepH valuecontrol release
相關次數:
  • 推薦推薦:0
  • 點閱點閱:356
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
四氧化三鐵是在生醫領域經常使用的金屬氧化物,由於其具有超順磁的特性,因此被廣泛應用在生醫領域,例如 MRI影像偵測,熱治療,藥物傳遞等。此材料已被廣泛應用於人體,因此,許多研究團隊對於四氧化三鐵是否會對細胞造成毒性均進行相關探討。然而, 不同團隊對於四氧化三鐵是否會對細胞造成毒性有不同的報導。四氧化三鐵間接對於細胞造成的傷害,是來自於當其解離後所生成的二價鐵離子與細胞內過氧化氫反應,所生成的氫氧自由基對細胞產生破壞所致。氫氧自由基是一種活性極高的活性氧,會破壞細胞內的膜狀胞器,引發細胞走向凋亡,而造成毒性。由Fe3O4 + 2H --> γFe2O3 + Fe2+ + H2O反應式中可知,四氧化三鐵解離程度與環境中pH值有關,因此,本實驗室推測四氧化三鐵經胞飲後所經過的不同胞器內部的pH值會影響四氧化三鐵的解離程度,進而影響氫氧自由基的生成能力。為了進一步釐清四氧化三鐵於各不同胞器環境中催化生成自由基的能力,我們利用具有熱敏感性之產氣微脂體做為包覆載體,使四氧化三鐵可以在定點釋放。我們將包覆有四氧化三鐵之微脂體餵食細胞,並於不同時間點加熱,以觀察四氧化三鐵於不同胞器環境下釋放對於其產生之氫氧自由基進而引發細胞死亡的影響。由本篇論文的實驗結果得知,四氧化三鐵在pH值較低(lysosome)的胞器環境中釋放,細胞的死亡率會因產生過多自由基而較顯著,反之,pH值較高的環境(endosome)死亡率則較不明顯。因此,未來將四氧化三鐵應用於生醫領域研究部分,可視其應用目的而選擇其於細胞內釋放位置,以達到最大效用。
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs, and in hyperthermia. Because the materials is applied to human, the cytotoxicity of SPIONs is discussed by many research teams. However, they hold different opinions. SPIONs induce toxicity via the generation of hydroxyl radicals. SPIONs are dissociated iron ions with H+ ions, the free iron in the form of ferrous ions (Fe2+) can react with hydrogen peroxide produce highly reactive hydroxyl radicals via the Fenton reaction: Fe2++H2O2--> Fe3++OH_+OH. . We know the dissociation extent of SPIONs is related with pH value from Fe3O4 + 2H  γFe2O3 + Fe2+ + H2O, therefore, we consider the dissociation of SPIONs is different at various organelle and lead to production of intracellular hydroxyl radicals and cytotoxicity are different. In order to check the SPIONs ‘s catalysis production of hydroxyl radicals at different pH organelle. we use the thermal-sensitive liposome system as carrier to encapsulate SPIONs and control SPIONs to different organelle, after that, we observe the variation of cytotoxicity. Our results had shown that release SPIONs in lysosome leads to more hydroxyl radicals and significant cytotoxicity. It is encouraging to conclude the pH value in lysosome is benefit to SPIONs catalysis and directly induce cell death.
目錄
摘要
圖錄
表錄
第一章 緒論
1-1前言
1-2四氧化三鐵(Superparamagnetic iron oxide nanoparticles)
1-3 ROS(Reactive Oxygen Species)
1-4 DMT1 (divalent metal transporter 1)
1-5 Fenton Reaction
1-6過脂化(Lipid Peroxidation)
1-7細胞凋亡(Apotosis) and 細胞壞死(Necrosis)
1-8胞吞作用 (Endocytosis)
1-9 碳酸氫銨(Ammonium bicarbonate)
1-10 微脂體
第二章 實驗藥品與儀器
2-1 實驗藥品
2-2 實驗儀器
2-3本系統微脂體製備
2-3-1內部未包覆四氧化三鐵之微脂體製備(lip.)
2-3-2內部包覆四氧化三鐵之微脂體製備(mag-lip.)
2-4檢測螢光四氧化三鐵接枝度以及定量四氧化三鐵的包覆率
2-5測量四氧化三鐵在不同pH值解離成二價鐵離子的程度
2-6測量四氧化三鐵在不同pH值溶液中產生氫氧自由基的程度
2-7 HT-1080對Mag-lip.的吞噬情形
2-7-1 Mag-lip.隨著不同餵食時間在細胞的累積量
2-7-2載體於胞內傳輸路徑之探討
2-8 Mag-lip.對於細胞死亡率的影響
2-8-1定量分析(MTS Assay)
2-8-2定性分析 (Live&Dead)
2-9 Mag-lip.造成細胞死亡的方式
2-10 Mag-lip.在細胞體內產生二價鐵離子的數量
2-10-1定量分析(MTS Assay)
2-10-2 定性分析(Live&Dead)
2-11 Mag-lip.在細胞體產生活性氧(ROS)數量
2-11-1定量分析(Flow Cytometry)
2-11-2 定性分析(CLSM)
2-12 Mag-lip.在細胞體內產生氫氧自由基的數量
2-13 Mag-lip.在細胞體所造成過氧化的程度
2-13-1定量分析
2-13-2定性分析
第三章 實驗結果與討論
3-1四氧化三鐵特性探討
3-1-1四氧化三鐵粒徑以及電荷大小
3-1-2四氧化三鐵在不同pH值解離能力
3-1-3四氧化三鐵在不同pH值產生氫氧自由基能力
3-1-4 選擇最佳化四氧化三鐵濃度
3-1-5四氧化三鐵螢光接枝
3-2微脂體特性探討
3-2-1 微脂體粒徑以及電荷大小
3-2-2 微脂體內四氧化三鐵包覆率
3-2-3 HT1080對Mag-lip.的吞噬能力
3-2-4 HT1080細胞吞噬Mag- liposome之路徑探討
3-3環境溫度及材料本身毒性對細胞存活率之影響
3-4四氧化三鐵在不同胞器環境釋放對於細胞死亡率影響
3-5四氧化三鐵所催化氫氧自由基造成細胞死亡方式之探討
3-6四氧化三鐵於不同胞器內解離能力
3-7四氧化三鐵於不同胞器內誘發ROS之分析
3-8四氧化三鐵於不同胞器內誘發氫氧自由基之分析
3-9四氧化三鐵於不同胞器內釋放造成細胞內過氧化程度的差異
3-9.1 定量分析細胞內過氧化差異
3-9.2 定性分析細胞內過氧化差異
第四章 結論
參考資料
[1] C. C. Berry, S. Wells, S. Charles, G. Aitchison, and A. S. Curtis, "Cell response to dextran-derivatised iron oxide nanoparticles post internalisation," Biomaterials, vol. 25, pp. 5405-13, Oct 2004.
[2] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, vol. 26, pp. 3995-4021, Jun 2005.
[3] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, "Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy," Adv Drug Deliv Rev, vol. 63, pp. 24-46, Jan-Feb 2011.
[4] N. Singh, G. J. Jenkins, R. Asadi, and S. H. Doak, "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)," Nano Rev, vol. 1, 2010.
[5] C. H. Cunningham, T. Arai, P. C. Yang, M. V. McConnell, J. M. Pauly, and S. M. Conolly, "Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles," Magn Reson Med, vol. 53, pp. 999-1005, May 2005.
[6] H. Y. Yoon, G. Saravanakumar, R. Heo, S. H. Choi, I. C. Song, M. H. Han, et al., "Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy," J Control Release, vol. 160, pp. 692-8, Jun 28 2012.
[7] V. I. Shubayev, T. R. Pisanic, 2nd, and S. Jin, "Magnetic nanoparticles for theragnostics," Adv Drug Deliv Rev, vol. 61, pp. 467-77, Jun 21 2009.
[8] D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, and M. Toyoda, "Application of magnetic nanoparticles to gene delivery," Int J Mol Sci, vol. 12, pp. 3705-22, 2011.
[9] S. Naqvi, M. Samim, M. Abdin, F. J. Ahmed, A. Maitra, C. Prashant, et al., "Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress," Int J Nanomedicine, vol. 5, pp. 983-9, 2010.
[10] G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, et al., "Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy," Theranostics, vol. 3, pp. 116-26, 2013.
[11] T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, et al., "Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles," Nat Nanotechnol, vol. 6, pp. 175-8, Mar 2011.
[12] J. Wang and K. Pantopoulos, "Regulation of cellular iron metabolism," Biochem J, vol. 434, pp. 365-81, Mar 15 2011.
[13] E. K. Schlachter, H. R. Widmer, A. Bregy, T. Lonnfors-Weitzel, I. Vajtai, N. Corazza, et al., "Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study," Int J Nanomedicine, vol. 6, pp. 1793-800, 2011.
[14] A. S. Arbab, L. B. Wilson, P. Ashari, E. K. Jordan, B. K. Lewis, and J. A. Frank, "A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging," NMR Biomed, vol. 18, pp. 383-9, Oct 2005.
[15] T. Kolter and K. Sandhoff, "Lysosomal degradation of membrane lipids," FEBS Lett, vol. 584, pp. 1700-12, May 3 2010.
[16] H. Schulze, T. Kolter, and K. Sandhoff, "Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation," Biochim Biophys Acta, vol. 1793, pp. 674-83, Apr 2009.
[17] H. Zoller, I. Theurl, R. Koch, A. Kaser, and G. Weiss, "Mechanisms of Iron Mediated Regulation of the Duodenal Iron Transporters Divalent Metal Transporter 1 and Ferroportin 1," Blood Cells, Molecules, and Diseases, vol. 29, pp. 488-497, 2002.
[18] Q. Liu, U. Berchner-Pfannschmidt, U. Moller, M. Brecht, C. Wotzlaw, H. Acker, et al., "A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression," Proc Natl Acad Sci U S A, vol. 101, pp. 4302-7, Mar 23 2004.
[19] J. A. Lemire, J. J. Harrison, and R. J. Turner, "Antimicrobial activity of metals: mechanisms, molecular targets and applications," Nat Rev Microbiol, vol. 11, pp. 371-84, Jun 2013.
[20] S. Wang, "A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater," Dyes and Pigments, vol. 76, pp. 714-720, 2008.
[21] H. C. Isom, E. I. McDevitt, and M. S. Moon, "Elevated hepatic iron: a confounding factor in chronic hepatitis C," Biochim Biophys Acta, vol. 1790, pp. 650-62, Jul 2009.
[22] A. Catala, "Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions," Chem Phys Lipids, vol. 157, pp. 1-11, Jan 2009.
[23] E. Niki, "Lipid peroxidation: physiological levels and dual biological effects," Free Radic Biol Med, vol. 47, pp. 469-84, Sep 1 2009.
[24] M. D. Dunning, A. Lakatos, L. Loizou, M. Kettunen, C. ffrench-Constant, K. M. Brindle, et al., "Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS," J Neurosci, vol. 24, pp. 9799-810, Nov 3 2004.
[25] M. I. Khan, A. Mohammad, G. Patil, S. Naqvi, L. Chauhan, and I. Ahmad, "Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles," Biomaterials, vol. 33, pp. 1477-1488, 2012.
[26] M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, and A. Petri-Fink, "Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles," Chem Rev, vol. 112, pp. 2323-38, Apr 11 2012.
[27] A. Pal, A. Singh, T. C. Nag, P. Chattopadhyay, R. Mathur, and S. Jain, "Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection," Int J Nanomedicine, vol. 8, pp. 2259-72, 2013.
[28] E. S. Henle, "Oxidative Damage to DNA Constituents by Iron-mediated Fenton Reactions. THE DEOXYCYTIDINE FAMILY," Journal of Biological Chemistry, vol. 271, pp. 21167-21176, 1996.
[29] D. Wang, L. H. Wang, Y. Zhao, Y. P. Lu, and L. Zhu, "Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) Exon1B by hypoxia-inducible factor-1," IUBMB Life, vol. 62, pp. 629-36, Aug 2010.
[30] D. S. Kalinowski and D. R. Richardson, "The evolution of iron chelators for the treatment of iron overload disease and cancer," Pharmacol Rev, vol. 57, pp. 547-83, Dec 2005.
[31] E. T. Ahrens, M. Feili-Hariri, H. Xu, G. Genove, and P. A. Morel, "Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging," Magn Reson Med, vol. 49, pp. 1006-13, Jun 2003.
[32] S. T. Stern, P. P. Adiseshaiah, and R. M. Crist, "Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity," Part Fibre Toxicol, vol. 9, p. 20, 2012.
[33] J. Gu, H. Xu, Y. Han, W. Dai, W. Hao, C. Wang, et al., "The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell," Sci China Life Sci, vol. 54, pp. 793-805, Sep 2011.
[34] I. G. Kirkinezos and C. T. Moraes, "Reactive oxygen species and mitochondrial diseases," Semin Cell Dev Biol, vol. 12, pp. 449-57, Dec 2001.
[35] M. Priwitzerova, G. Nie, A. D. Sheftel, D. Pospisilova, V. Divoky, and P. Ponka, "Functional consequences of the human DMT1 (SLC11A2) mutation on protein expression and iron uptake," Blood, vol. 106, pp. 3985-7, Dec 1 2005.
[36] L. J. Niedernhofer, J. S. Daniels, C. A. Rouzer, R. E. Greene, and L. J. Marnett, "Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells," J Biol Chem, vol. 278, pp. 31426-33, Aug 15 2003.
[37] T. Demiral and I. Turkan, "Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance," Environmental and Experimental Botany, vol. 53, pp. 247-257, 2005.
[38] A. L. Edinger and C. B. Thompson, "Death by design: apoptosis, necrosis and autophagy," Curr Opin Cell Biol, vol. 16, pp. 663-9, Dec 2004.
[39] P. Golstein and G. Kroemer, "Cell death by necrosis: towards a molecular definition," Trends Biochem Sci, vol. 32, pp. 37-43, Jan 2007.
[40] M. Lakadamyali, M. J. Rust, and X. Zhuang, "Endocytosis of influenza viruses," Microbes Infect, vol. 6, pp. 929-36, Aug 2004.
[41] D. I. Mundy, W. P. Li, K. Luby-Phelps, and R. G. Anderson, "Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content," Mol Biol Cell, vol. 23, pp. 864-80, Mar 2012.
[42] J. Huotari and A. Helenius, "Endosome maturation," EMBO J, vol. 30, pp. 3481-500, Aug 31 2011.
[43] J. R. Eisenbrey, O. M. Burstein, R. Kambhampati, F. Forsberg, J. B. Liu, and M. A. Wheatley, "Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery," J Control Release, vol. 143, pp. 38-44, Apr 2 2010.
[44] Dickson D. UK scientists test liposome gene therapy technique. Nature. 1993;365:4.
[45] Sessa G, Weissman.G. Phospholipid Spherules (Liposomes) as a Model for Biological Membranes. J Lipid Res. 1968;9:310-&.
[46] Rudolph AS. Biomaterial Biotechnology Using Self-Assembled Lipid Microstructures. J Cell Biochem. 1994;56:183-7.
[47] Allen TM. Liposomal drug formulations - Rationale for development and whatwe can expect for the future. Drugs. 1998;56:747-56.
[48] Osullivan J, Heads A, Hunter S. Microbubble Image-Enhancement and Pericardiocentesis. Int J Cardiol. 1993;42:95-6.
[49] Haensler J, Szoka FC. Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconjugate chemistry. 1993;4:372-9.
[50] Aicher A, Miller K, Reich E, Hautmann R. Photodynamic Therapy of Human Bladder-Carcinoma Cells in-Vitro with Ph-Sensitive Liposomes as Carriers for 9-Acetoxy-Tetra-N-Propylporphycene. Urol Res. 1994;22:25-32.
[51] Zaru M, Manca ML, Fadda AM, Antimisiaris SG. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloid Surface B. 2009;71:88-95.
[52] Jones MN. The Surface-Properties of Phospholipid Liposome Systems and Their Characterization. Adv Colloid Interfac. 1995;54:93-128.
[53] Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Bba-Biomembranes. 2000;1467:39-53.
[54] Cagdas FM, Ertugral N, Bucak S, Atay NZ. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes. Pharm Dev Technol. 2011;16:408-14.
[55] Zasadzinski JA, Wong B, Forbes N, Braun G, Wu GH. Novel methods of enhanced retention in and rapid, targeted release from liposomes. Curr Opin Colloid In. 2011;16:203-14.




(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *