帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏百鍵
論文名稱(中文):基於局部滲透係數線上估計之樹脂轉注成型監控與流動控制
論文名稱(外文):Process Monitoring and Flow Control in Resin Transfer Molding Based on Online Estimation of Local Permeability
指導教授(中文):姚遠
口試委員(中文):汪上曉
陳榮輝
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032557
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:67
中文關鍵詞:樹脂轉注成型局部滲透係數統計製程控制類神經網路模型預測控制
相關次數:
  • 推薦推薦:0
  • 點閱點閱:138
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
樹脂轉注成型是以樹脂注入封閉模具,並同時浸潤纖維補強材之複合材料製造方法,近年來已被廣泛地應用於包含航太與汽車等各領域。其中纖維補強材料之滲透係數會隨屬性及幾何結構不同而改變,並影響樹脂流動特性,繼而影響最終產品品質。若能對其做出有效的線上估計,並基於該參數之線上量值建立程序控制系統,以使得流動波前能穩定地推展,便有助於產品良率的提升。
首先,本文針對真實製程中所發生的非同質預織物與纖維排列不規則改變而導致滲透係數不均勻之情形提出一種適合程序控制的滲透係數量測方法,以對FRP複合材料之局部平面滲透係數進行線上測量與分析。該方法之發展可分為兩階段。在第一階段利用灌注設備與影像系統連結LabVIEW進行硬軟體整合,來實行製程可視化(flow visualization)以觀測樹脂之填充過程。此外,為了能即時反應出模穴內之局部壓力,於透明模具中嵌入一組壓力傳感器陣列,以更瞭解樹脂填充過程之壓力特性。在第二階段,將灌注過程所擷取之波前與局部壓力代入一套基於達西定律所導出之滲透係數測量方法,並線上計算局部滲透係數。該方法有三項好處,第一,不受限於恆壓灌注過程;其次,對預織物之局部滲透係數和全局平均滲透係數均能有效測量;最後,可對滲透係數進行線上估計,使得量測值可以用於後續的程序控制。本文將該方法用於樹脂轉注成型的實驗中,並將估計結果與其他方法進行比較,從而驗證了此方法之有效性。
接著,本研究發展出基於局部滲透係數線上估計方法的控制架構,該架構係由原本的樹脂轉注成型製程上設立具備反饋校正功能的模型預測控制架構。首先在一般的模型預測控制系統,我們藉由蒐集大量的模擬數據來訓練類神經網路模型,該模型會以當前波前位置、壓力與方法一計算的滲透係數來預測波前之推展。然後再對模型使用最適化方法來求得下一個時刻的最佳灌注壓力。該控制架構有兩大用處,第一,能有效地控制流速,其次,能大幅度消除製程非線性。再來,本文會在該架構的外部建立PI控制器,使其依據反饋的誤差來校正速度設定點以彌補一些外部因素造成的模型失配與控制性能低落問題。最終,本文經由數次實驗來分別測試一般與具備反饋校正迴路之模型預測控制系統的控制性能,並將結果與直接用PI控制來控制波前速度之結果做比較,以驗證該控制架構的可行性。
一. 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 7
1.4 文章架構 8
二. 研究方法 9
2.1樹脂轉注成型 9
2.1.1實驗原理 9
2.1.2理論模式 9
2.2實驗材料、設備與硬軟體整合 10
2.2.1實驗材料 10
2.2.2實驗設備 10
2.2.3硬軟體整合 14
2.3 樹脂轉注成型之實驗流程 15
2.4 局部滲透係數線上估計 17
2.4.1統御方程式與參考方法 17
2.4.2方法一:兩點法 20
2.4.3方法二:最小平方法 21
2.5局部滲透係數線上監控 23
2.6 恆定流動波前速度之控制系統 25
2.6.1 基於類神經網路建模 25
2.6.2 模流分析軟體 Moldex3D RTM模組 28
2.6.3 模型預測控制系統 29
2.6.4 具備反饋校正迴路之模型預測控制系統 31
三. 研究成果 33
3.1 硬軟體整合成果 33
3.1.1影像處理 33
3.1.2 樹脂轉注成型之人機介面 34
3.2 平面滲透係數估計結果 36
3.2.1近乎均勻預織物與恆定灌注壓力之實驗 36
3.2.2 近乎均勻預織物與時變灌注壓力之實驗 40
3.2.3 不均勻預織物與恆定灌注壓力之實驗 42
3.3 基於局部滲透係數線上估計之程序控制結果 47
3.3.1 模型訓練與測試結果 47
3.3.2 模型預測控制系統之控制結果 50
3.3.3 具備反饋校正迴路之模型預測控制的結果 56
四. 結論 61
五. 參考文獻 63
[1] T. J. Wang, C. H. Wu, and L. J. Lee, "In‐plane permeability measurement and analysis in liquid composite molding," Polymer Composites, vol. 15, pp. 278-288, 1994.
[2] P. Ferland, D. Guittard, and F. Trochu, "Concurrent methods for permeability measurement in resin transfer molding," Polymer Composites, vol. 17, pp. 149-158, 1996.
[3] Y. S. Song, J. R. Youn, "Flow advancement through multi-layered preform with sandwich structure," Composites Part A:Applied Science and Manufacturing, vol. 38, pp.1082–1088, 2006
[4] K. K. Han, C. W. Lee, and B. P. Rice, "Measurements of the permeability of fiber preforms and applications," Composites Science and Technology, vol. 60, pp. 2435-2441, 2000.
[5] Y. J. Lee, J. H. Wu, Y. Hsu, and C. H. Chung, "A prediction method on in-plane permeability of mat/roving fibers laminates in vacuum assisted resin transfer molding," Polymer Composites, vol. 27, pp. 665-670, 2006.
[6] R. Arbter, J. M. Beraud, C. Binetruy, L. Bizet, J. Bréard, S. Comas-Cardona, C. Demaria, A. Endruweit, P. Ermanni, F. Gommer, S. Hasanovic, P. Henrat, F. Klunker, B. Laine, S. Lavanchy, S.V. Lomov, A. Long, V. Michaud, G. Morren, E. Ruiz, H. Sol, F. Trochu, B. Verleye, M. Wietgrefe, W. Wu, G. Ziegmann, "Experimental determination of the permeability of textiles: A benchmark exercise," Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 1157-1168, 2011.
[7] S. H. Ahn, W. I. Lee, and G. S. Springer, "Measurement of the three-dimensional permeability of fiber preforms using embedded fiber optic sensors," Journal of Composite Materials, vol. 29, pp. 714-733, 1995
[8] V. M. A. Calado and S. G. Advani, "Effective average permeability of multi-layer preforms in resin transfer molding," Composites Science and Technology, vol. 56, pp. 519-531, 1996.
[9] J. Weitzenböck, R. Shenoi, and P. Wilson, "Measurement of three-dimensional permeability," Composites Part A: Applied Science and Manufacturing, vol. 29, pp. 159-169, 1998.
[10] R. Chen, C. Dong, Z. Liang, C. Zhang, and B. Wang, "Flow modeling and simulation for vacuum assisted resin transfer molding process with the equivalent permeability method," Polymer Composites, vol. 25, pp. 146-164, 2004.
[11] Q. Liu, R. S. Parnas, and H. S. Giffard, "New set-up for in-plane permeability measurement," Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 954-962, 2007.
[12] G. Morren, S. Bossuyt, and H. Sol, "2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method," Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 1530-1536, 2008.
[13] L. Ding, C. Shih, Z. Liang, C. Zhang, and B. Wang, "In situ measurement and monitoring of whole-field permeability profile of fiber preform for liquid composite molding processes," Composites Part A: Applied Science and Manufacturing, vol. 34, pp. 779-789, 2003.
[14] M. Devillard, K.-T. Hsiao, A. Gokce, and S. G. Advani, "On-line characterization of bulk permeability and race-tracking during the filling stage in resin transfer molding process," Journal of Composite Materials, vol. 37, pp. 1525-1541, 2003.
[15] D. R. Nielsen and R. Pitchumani, "Control of flow in resin transfer molding with real-time preform permeability estimation," Polymer Composites, vol. 23, pp. 1087-1110, 2002.
[16] R. J. Johnson, R. Pitchumani, " Enhancement of flow in VARTM using localized induction heating," Composites Science and Technology, vol. 63, pp. 2201-2215, 2003
[17] R. J. Johnson, R. Pitchumani, "Simulation of active flow control based on localized preform heating in a VARTM process," Composites Part A: : Applied Science and Manufacturing, vol. 37, pp. 1815-1830, 2006
[18] R. J. Johnson, R. Pitchumani, "Flow control using localized induction heating in a VARTM process," Composites Science and Technology, vol. 67, pp. 669–684, 2007
[19] R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, "Full-field monitoring of resin flow using an area-sensor array in a VaRTM process," Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 550-559, 2011.
[20] R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, "Control of resin flow/temperature using multifunctional interdigital electrode array film during a VaRTM process," Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 782-793, 2011.
[21] J. M. Lawrence, S. G. Advani, "Use of sensors and actuators to address flow disturbances during the resin transfer molding process," Polymer Composites, vol. 24, pp.237-248, 2003
[22] D. Bender, J. Schuster, D Heider, "Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing," Composites Science and Technology, vol. 66, pp. 2266-2271, 2006
[23] J. Li, X. Fu, C. Zhang, R. Liang, and B. Wang, "Optimal injection design for resin transfer molding with in situ permeability measurement and process simulation," Journal of Composite Materials, vol. 43, pp. 1695-1712, 2009.
[24] D. R. Nielsen, R. Pitchumani, "Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization," Composites Part A: Applied Science and Manufacturing, vol. 32, pp. 1789-1803, 2001.
[25] D. R. Nielsen, R. Pitchumani, "Closed-loop flow control in resin transfer molding using real-time numerical process simulations," Composites Science and Technology, vol. 62, pp. 283-298, 2002
[26] S. Bickerton, H. C. Stadtfeld, K.V. Steiner, S.G. Advani. "Design and application of actively controlled injection schemes for resin transfer molding," Composites Science and Technology, vol. 61, pp. 1625–1637, 2001
[27] J.S Leclerc, E. Ruiz, "Porosity reduction using optimized flow velocity in resin transfer molding," Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 1859–1868, 2008
[28] S. G. Advani and E. M. Sozer, "Process modeling in composites manufacturing," New York: Marcel Dekker, 2002.
[29] D. C. Montgomery, Statistical Quality Control: A Modern Introduction. New York: John Wiley, 2009.
[30] E. F. Camacho, C. Bordons, Model Predictive control. Springer-Verlag, 1999
[31] Y. C. Zhu, Multivariable system identification for process control. Pergamon, 2001
[32] I. Aleksander, H. Morton, An introduction to neural computing, London: Chapman & Hall, 1990
[33] S. Haykin, Neural networks: A comprehensive foundation, IEEE Computer Society Press, 1994
[34] X. Chen, "A study on profile setting on injection molding," Ph.D. Thesis. The Hong Kong University of Science and Technology, Hong Kong, China, 2002
[35] Y. Yang, "Injection molding control: from process to quality," Ph.D. Thesis. The Hong Kong University of Science and Technology, Hong Kong, China, 2004
[36] H. Yang, W. Y. Chang, C. Y. Huang, C. C. Hsu, R. Y. Chang, "A filling behavior study in resin transfer molding process through 3D simulation and experimental visualization," ANTEC Conference, 2014
[37] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, F. J. Doyle, Process dynamics and control. New York: John Wiley, 2011
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *