帳號:guest(18.118.128.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林信辰
作者(外文):Lin, Shin-Chen
論文名稱(中文):氧代氮代苯并環己烷與苯胺三聚體共聚物之合成及應用於抗腐蝕材料之研究
論文名稱(外文):Preparation of copolymers of benzoxazine and aniline trimer and their application for anticorrosion
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):呂幸江
鄭如忠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032553
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:氧代氮代苯并環己烷苯胺三聚體防腐蝕
外文關鍵詞:benzoxazineaniline trimeranticorrosion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:528
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本研究以帶有馬來醯胺官能基的氧代氮代苯并環己烷化合物(NHMI-Bz)與苯胺三聚體(ACAT)為單體,利用紅外光譜儀(FTIR)和微差掃描卡計(DSC)探討其混合物的共聚合行為和反應機構,以及共聚合物的防腐蝕效能。在NHMI-Bz與ACAT的熱共聚合的過程中,苯胺三聚體先進行quinoid crosslinking,緊接著是苯胺三聚體末端的一級胺與馬來醯胺上的碳碳雙鍵進行Michael addition反應,隨後苯胺三聚體末端的一級胺催化了氧代氮代苯并環己烷的開環反應,並與開環後的中間體產生反應,最後是苯胺三聚體之間進行聚合為聚苯胺與碳碳雙鍵的加成反應。
透過熱重損失分析儀分析NHMI-Bz/ACAT共聚合物的熱穩定性質,發現其共聚物在氮氣環境下,800 °C時的殘碳量達到50 wt%以上,5 wt%的重量損失溫度皆在320 °C以上,顯示其共聚物具有良好的熱穩定性以及難燃性。
防腐蝕實驗結果顯示,加入33 wt%的ACAT於NHMI-Bz/ACAT共聚合物中時,塗佈此共聚合物的冷軋鋼之腐蝕速率為4.8 μm/year,明顯低於使用純NHMI-Bz或是ACAT所量得的腐蝕速率,顯示NHMI-Bz和ACAT具有防腐蝕的協同效應,主要原因為氧代氮代苯并環己烷提供良好的水氣阻隔性,以及苯胺三聚體本身所具有的電活性,在這兩個因素的影響下產生了協同效應,而達到良好的防腐蝕效果。
This work studies reactive blends of a maleimide-containing benzoxazine (NHMI-Bz) and an amine-capped aniline trimer (ACAT) compounds. The first part is the investigation on the reaction mechanism with Fourier Transform Infrared and Differential Scanning Calorimmetry. At the initial heating stage, the quinoid crosslinking reaction of ACAT occurs first. The Michael-addition reaction between the amine groups of ACAT and maleimide groups of NHMI-Bz follows at higher temperatures. The amine groups of ACAT catalyze the ring-poening reaction of the benzoxazine groups of NHMI-Bz to generate the reaction intermediate bearing iminium moieties, which might react toward both another benzoxazine groups of NHMI-Bz and the amine groups of ACAT. Moreover, self-polymerization of the maleimide groups of NHMI-Bz and the aniline groups of ACAT results in highly crosslinked products. The fully cured NHMI-Bz-ACAT resins show good thermal stability and sufficient flame retardancy.
The cured NHMI-Bz-ACAT resins have been used for anticorrosion application. The corrosion rate of the cured samples with 33wt% ACAT is much slower than the values recorded with the cured neat NHMI-Bz resin and the neat ACAT polymer. This result indicates that NHMI-Bz and ACAT could play a synergistic effect on anticorrosion, as NHMI-Bz contributes the water resistance and ACAT provides the electroactivity.
第一章 緒論 1
1.1 前言 1
1.2 研究方向 2
第二章 文獻回顧 4
2.1 氧代氮代苯并環己烷(Benzoxazine)簡介 4
2.2 氧代氮代苯并環己烷 (Benzoxazine)之共聚合物 7
2.2.1. 環氧樹脂(epoxy)共聚 7
2.2.2. 聚胺脂(polyurethane)共聚 10
2.2.3. 氰酸脂(cyanate ester)共聚 11
2.3 氧代氮代苯并環己烷(Benzoxazine)之催化聚合 13
2.4 聚苯胺寡聚體簡介 16
2.5 高分子應用於防腐蝕研究 20
2.5.1 環氧樹脂 20
2.5.2 聚苯胺 21
2.5.3 氧代氮代苯并環己烷 22
2.6 量測防腐蝕速率之方法 25
2.6.1. Mass loss test 25
2.6.2. 塔伏外插(Tafel extrapolation) 25
2.6.3. 線性極化(Linear polarization resistance) 27
第三章 實驗 29
3.1 實驗藥品 29
3.2 實驗儀器 30
3.3 單體合成 32
3.4 樣品製備及固化 34
3.5 防腐蝕測試的工作電極製備 34
3.6 電化學防腐蝕測試(Electrochemical corrosion studies) 35
3.7 附著力測試(Adhesion test) 36
第四章 結果與討論 37
4.1 NHMI-Bz、ACAT聚合反應 37
4.2 熱力學分析 50
4.3 機械性質分析 53
4.4 防腐蝕分析 55
第五章 結論 67
第六章 參考文獻 68
1. A. Chernykh, T. Agag, H. Ishida, “Novel benzoxazine monomer containing dicetylene linkage: an approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalysts”, Polymer, 50 (2009) 3153-3157
2. H. Ishida, D.J. Allen, “Gelation behavior of near-zero
shrinkage polybenzoxazines”, J. Appl. Polym. Sci., 79 (2001) 406-417
3. C.Y. Hsieh, W.C. Su, C.S. Wu, L.K. Lin, K.Y. Hsu, Y.L. Liu, “Benzoxazine-containing branched polysiloxanes: highly efficient reactive-type flame retardants and property enhancement agents for polymers”, Polymer, 54 (2013) 2945-2951
4. T. Agag, T. Takeichi, “Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets”, Macromolecules, 36 (2003) 6010-6017
5. B. Kiskan, Y. Yagci, “Synthesis and characterization of thermally curable polyacetylenes by polymerization of propargyl benzoxazine using rhodium catalyst”, Polymer, 49 (2008) 2455-2460
6. T. Chaisuwan, H. Ishida, “High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications”, J. Appl. Polym. Sci., 101 (2006) 548-558
7. H.J. Kim, Z. Brunovska, H. Ishida, “Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers”, Polymer, 40 (1999) 6565-6573
8. Y.L. Liu, J.M. Yu, C.I. Chou, “Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups”, J. Polym. Sci. Part A: Polym. Chem., 42 (2004) 5954-5963
9. Y.H. Lee, D.J. Allen, H. Ishida,”Effect of rubber reactivity on the morphology of polybenzoxazine blends investigated by atomic force microscopy and dynamic mechanical analysis”, J. Appl. Polym. Sci., 100 (2006) 2443-2454
10. T. Takeichi, Y. Guo, T. Agag, “Synthesis and characterization of poly(urethane-benzoxazine) films as novel type of polyurethane/phenolic resin composites”, J. Polym. Sci. Part A: Polym. Chem., 38 (2000) 4165-4176
11. H. Ishida, Y.H. Lee, “Infrared and thermal analysis of polybenzoxazie and polycarbonate blends”, J. Appl. Polym. Sci., 81 (2001) 1021-1034
12. J. Dunkers, H. Ishida, “Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts”, J. Polym. Sci. Part A: Polym. Chem., 37 (1999) 1913-1921
13. H. Oie, A. Mori, A. Sudo, T. Endo, “Synthesis of networked polymer based on ring-opening addition reaction of 1,3-benzoxazine with resorcinol”, J. Polym. Sci. Part A: Polym. Chem., 50 (2012) 4756-4761
14. A.W. Kawaguchi, A. Sudo, Takeshi, Endo, “Polymerization-
depolymerization system based on reversible addition-dissociation reaction of 1,3-benzoxazine with thiol”, ACS Macro Letters, 2 (2013) 1-4
15. T.Agag, C. Arza, F.J. Maurer, H. shida, “Primary amine-functional benzoxazine monomers and their use for amine-containing monomeric benzoxazines”, Macromolecules, 43 (2010) 2748-2758
16. A.A. Alhwaige, T. Agag, H.Ishida, S. Qutubuddin,”Biobased chitosan/polybenzoxazine cross-linked films: preparation in aqueous media and synergistic improvements in thermal and mechanical properties”, Biomacromolecules, 14 (2013) 1806-1815
17. F. W. Hollay, C. Cope, “Condensation products of aldehydes and
ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine”, Hey. J. Chem. Soc., 1590 (1931) 1875-1879
18. W.J. Burke, “3,4-Dihydro-1,3,2H-benzoxazines. Reaction of p-substituted phenols with N,N-dimethylolamines”, J. Am. Chem. Soc., 71 (1949) 609-612
19. H. Ishida Y. Rodriguez, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry”, Polymer, 36 (1995) 3151-3158
20. H. Kimura, Y. Murata, A. Matsumoto, K. Hasegawa, K. Ohtsuka, A. Fukuda, “New thermosetting resin from terpenediphenol-based benzoxazine and epoxy resin”, J. Appl. Polym. Sci., 74 (1999) 2266-2273
21. S. Rimdusit, H. Ishida, “Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resin”, Polymer, 41 (2000) 7941-7949
22. S. Rimdust, H. Ishida, “Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins”, J. Polym. Sci. Part B: Polym. Phys., 38 (2000) 1687-1698
23. T. Agag, T. Takeichi, “Synthesis, characterization and clay-reinforcement of epoxy cured with benzoxazine”, High Performance Polymer, 25 (2002) 115-132
24. BS Rao, K.R. Reddy, S.K. Pathak, AR Pasala, “Benzoxazine-
epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties”, Polym. Int., 54 (2005) 1371-1376
25. C.H. Lin, S.J. Hhuang, P.J. Wang, H.T. Lin, S.A. Dai, “Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine”, Macromolecules, 45 (2012) 7461-7466
26. X. Li, Y. Xia, W. Xu, Q. Ran, Y. Gu, “The curing procedure for a benzoxazine–cyanate–epoxy system and the properties of the terpolymer” Polym. Chem., 3 (2012) 1629-1633
27. J. Dunkers, H. Ishida, “Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acid and phenols as catalysts” J. Polym. Sci. Part A: Polym. Chem., 37 (1999) 1913-1921
28. Y. –X. Wang, H. Ishida, “Cationic ring-opening polymerization of benzoxazines” Polymer, 40 (1999) 4563-4570
29. F.L. Lu, F. Wudl, M. Nowak, A.J. Heeger, “Phenyl-capped octaaniline(COA): an excellent model for polyaniline”, J. Am. Chem. Soc., 108 (1986) 8311-8313
30. Y. Wei, C. Yang, T. Ding, “A one-step method to synthesize N,N-bis(4’aminophenyl)-1,4-quinonenediimine and its derivatives”, Tetrahedron Letters, 37 (1996) 731-734
31. L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, Y. Wei, “Synthesis of parent aniline tetramer and pentamer and redox properties”, Materials Letters, 59 (2005) 2446-2450
32. L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, Y. Wei, “Synthesis of phenyl-capped aniline heptamer and its UV-vis spectral study”, Synthetic Metals, 149 (2005) 129-134
33. M. Fahlman, S. Jasty, A.J. Epstein, “Corrosion protection of iron/steel by emeraldine base polyaniline: an X-ray photoelectron spectroscopy study”, Synthetic Metals, 85 (1997) 1323-1326
34. Y. Wei, C. Yang, T. Ding, “A one-step method to synthesize N,N’-bis(4’-aminophenyl)-1,4-quinonenediimine and its derivatives”, Tetrahedron Letters, 37 (1996) 731-734
35. Z.Y. Wang, C.Yang, J. P. Gao, J. Lin, X. S. Meng, “Electroactive polyimides derived from amino-terminated aniline trimer”, Macromolecules, 31 (1998) 2702-2704
36. J.T. Zhang, J.M. Hu, J.Q. Zhang, C.N. Cao, “Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS”, Progress in Organic Coatings, 51 (2004) 145-151
37. J.M. Hu, J.Q. Zhang, C.N. Cao, “Determination of water uptake and diffusion of Cl− ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy”, Progress in Organic Coatings, 46 (2003) 273-279
38. K.Y. Huang, C.L. Shiu, P.S. Wu, Y. Wei, J.M. Yeh, W.T. Li, “Effect of amino-capped aniline trimer on corrosion protection and physical properties for electroactive epoxy thermosets”, Electrochimica Acta, 54 (2009) 5400-407
39. C.W. Peng, K.C. Chang, C,J. Weng, M.C. Lai, C.H. Hsu, S.C Hsu, Y.Y. Hsu, W.I. Hung, Y. Wei, J.M. Yeh, “Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application”, Electrochimica Acta, 95 (2013) 192-199
40. C. Zhou, X. Lu, Z. Xin, J. Liu, “Corrosion resistance of novel silane-functional polybenzoxazine coating on steel”, Corrosion Science, 70 (2013) 145-151
41. C. Zhou, X. Lu, Z. Xin, J. Liu, Y. Zhang, “Hydrophobic benzoxazine-cured epoxy coatings for corrosion protection”, Progress in Organic Coatings, 76 (2013) 1178-1183
42. D. Zhu, Wim J. van Ooij, “Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution. Part 2: mechanism for corrosion protection”, Corrosion Science, 45 (2003) 2177–2197
43. X. Yang, Y. Jiang, T. Zhao, Y. Yu, “Amino-capped aniline trimerepoxy resin intercrosslinked networks”, J. Appl. Polym. Sci., 102 (2006) 222-226
44. C.S. Wu, S.H. Tsai, Y.L. Liu, “One-pot synthesis of linear and branched poly(amide aspartimide)s with good solubility in organic solvents”, J. Polym. Sci. Part A: Polym. Chem., 43 (2005) 1923-1929
45. B.D. Mather, K. Viswanatha, K.M. Miller , T.E. Long, “Michael addition reactions in macromolecular design for emerging technologies”, Prog. Polym. Sci., 31 (2006) 487-531
46. Z. Rozlivkova, M. Trchova, M. Exnerova, J. Stejskal, “The carbonization of granular polyaniline to produce nitrogen-containing carbon” Syn. Met., 161 (2011) 1122-1129
47. H.Y. Low, H. Ishida, “Mechanistic study on the thermal decomposition of polybenzoxazines: effects of aliphatic amines”, J. Polym. Sci. Part B: Polym. Phy., 36 (1998) 1935-1946
48. H.Y. Low, H. Ishida, “Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines”, Polymer, 40 (1999) 4365-4376
49. D.W. van Krevelen, “Some basic aspects of flame resistance of polymeric materials”, polymer, 16(1975) 615-620
50. Takayuki Murayama, “Dynamic mechanical analysis of polymeric material”, New York: Elsevier Scientific Pub. Co., 1978
51. T.C. Huang, Y.A. Su, T.C. Yeh, H.Y. Huang, C.P. Wu, K.Y. Huang, Y.C. Chou, J.M. Yeh, Y. Wei, “Advanced anticorrosive coatings prepared from electroactive epoxy–SiO2 hybrid nanocomposite materials”, Electrochimica Acta, 56 (2011) 6142-6149
52. Z. Wang, Q. Ran, R. Zhu, Y. Gu, “Curing behaviors and thermal properties of benzoxazine and N,N’-(2,2,4-trimethylhexane-1,6-diyl) dimaleimide blend”, J. Appl. Polym. Sci., 129 (2013) 1124-1130
53. C.J. van Oss, M.K. Chaudhury, R.J. Good, “Interfacial Lifshitz-van der waals and polar interactions in macroscopic systems” Chem. Rev., 88 (1988) 927-941
54. C. Wang, Su Yi, S. Kuo, C. Huang, Y. Sheen, F. Chang, “Low-surface-free-energy materials based on polybenzoxazines” Angew. Chem. Int. Ed., 45 (2006) 2248-2251
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *