|
1.Hecht, D. S.; Hu, L. B.; Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater 2011, 23 (13), 1482-1513. 2.Bädeker, K., Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der Physik 1907, 327 (4), 749-766. 3.R.B.H. Tahar, T. B., Y. Ohya, Y. Takahashi, J. Appl. Phys. 1998, 83, 2631. 4.Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58. 5.Liu, X. L.; Han, S.; Zhou, C. W., Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett 2006, 6 (1), 34-39. 6.Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H., Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309 (5738), 1215-1219. 7.Hu, L. B.; Hecht, D. S.; Gruner, G., Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chem Rev 2010, 110 (10), 5790-5844. 8.Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M., High-Performance Carbon Nanotube Transparent Conductive Films by Scalable Dip Coating. Acs Nano 2012, 6 (11), 9737-9744. 9.Hecht, D. S., et al., High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 2011, 22 (7), 075201. 10.Pereira, L. F. C.; Rocha, C. G.; Latge, A.; Coleman, J. N.; Ferreira, M. S., Upper bound for the conductivity of nanotube networks. Appl Phys Lett 2009, 95 (12). 11.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669. 12.Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M., A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small 2013, 9 (8), 1188-1205. 13.Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108 (52), 19912-19916. 14.Choucair, M.; Thordarson, P.; Stride, J. A., Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 2009, 4 (1), 30-33. 15.Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2009, 9 (1), 30-35. 16.Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578. 17.Zheng, Q.; Ip, W. H.; Lin, X.; Yousefi, N.; Yeung, K. K.; Li, Z.; Kim, J.-K., Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. Acs Nano 2011, 5 (7), 6039-6051. 18.Ghosh, D. S.; Martinez, L.; Giurgola, S.; Vergani, P.; Pruneri, V., Widely transparent electrodes based on ultrathin metals. Opt. Lett. 2009, 34 (3), 325-327. 19.Hu, L.; Wu, H.; Cui, Y., Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin 2011, 36 (10), 760-765. 20.Kang, M.-G.; Park, H. J.; Se Hyun, A.; Xu, T.; Guo, L. J., Toward Low-Cost, High-Efficiency, and Scalable Organic Solar Cells with Transparent Metal Electrode and Improved Domain Morphology. Selected Topics in Quantum Electronics, IEEE Journal of 2010, 16 (6), 1807-1820. 21.Guo, L. J., Nanoimprint lithography: Methods and material requirements. Adv Mater 2007, 19 (4), 495-513. 22.Catrysse, P. B.; Fan, S. H., Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices. Nano Lett 2010, 10 (8), 2944-2949. 23.Zhu, S. W.; Gao, Y.; Hu, B.; Li, J.; Su, J.; Fan, Z. Y.; Zhou, J., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24 (33). 24.Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P., Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 2008, 8 (2), 689-692. 25.Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L., Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 2012, 11 (3), 241-249. 26.Lee, J.; Lee, I.; Kim, T. S.; Lee, J. Y., Efficient Welding of Silver Nanowire Networks without Post-Processing. Small 2013, 9 (17), 2887-2894. 27.Wang, X.; Zhi, L. J.; Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008, 8 (1), 323-327. 28.Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008, 2 (3), 463-470. 29.Pham, V. H.; Cuong, T. V.; Hur, S. H.; Shin, E. W.; Kim, J. S.; Chung, J. S.; Kim, E. J., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 2010, 48 (7), 1945-1951. 30.Maity, S.; Bochinski, J. R.; Clarke, L. I., Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Adv Funct Mater 2012, 22 (24), 5259-5270. 31.Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006, 128 (6), 2115-2120. 32.El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett 2005, 5 (5), 829-834. 33.Li, J.; Han, J. S.; Xu, T. S.; Guo, C. R.; Bu, X. Y.; Zhang, H.; Wang, L. P.; Sun, H. C.; Yang, B., Coating Urchinlike Gold Nanoparticles with Polypyrrole Thin Shells To Produce Photothermal Agents with High Stability and Photothermal Transduction Efficiency. Langmuir 2013, 29 (23), 7102-7110. 34.Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic Flower-Like CuS Superstructures as an Efficient 980 nm Laser-Driven Photothermal Agent for Ablation of Cancer Cells. Adv Mater 2011, 23 (31), 3542-3547. 35.Chen, Z.; Tian, Q.; Song, Y.; Yang, J.; Hu, J., PEG-mediated solvothermal synthesis of NaYF4:Yb/Er superstructures with efficient upconversion luminescence. Journal of Alloys and Compounds 2010, 506 (2), L17-L21. 36.Fedoruk, M.; Meixner, M.; Carretero-Palacios, S.; Lohmüller, T.; Feldmann, J., Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. Acs Nano 2013, 7 (9), 7648-7653. 37.Wang, C.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P. R.; Andio, M.; Lewis, J. P.; Matranga, C., Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5 (15), 6968-6974. 38.Walker, J. M.; Gou, L. F.; Bhattacharyya, S.; Lindahl, S. E.; Zaleski, J. M., Photothermal Plasmonic Triggering of Au Nanoparticle Surface Radical Polymerization. Chem Mater 2011, 23 (23), 5275-5281. 39.Ye, E. Y.; Zhang, S. Y.; Liu, S. H.; Han, M. Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chem-Eur J 2011, 17 (11), 3074-3077. 40.Seager, C. H.; Pike, G. E., Percolation and conductivity: A computer study. II. Physical Review B 1974, 10 (4), 1435-1446. 41.Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4 (6), 1996-2004. 42.Roper, D. K.; Ahn, W.; Hoepfner, M., Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (9), 3636-3641. 43.Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. The Journal of Physical Chemistry B 2000, 104 (39), 9111-9117.
|