帳號:guest(3.15.146.43)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳易修
作者(外文):Wu, Yi-Hsiu
論文名稱(中文):溶劑揮發誘導嵌段共聚物奈米微結構薄膜之有序化
論文名稱(外文):Controlled Ordering of Block Copolymer Gyroid Thin Films by Solvent Evaporation
指導教授(中文):何榮銘
口試委員(中文):吳逸謨
蔣酉旺
孫亞賢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032550
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:63
中文關鍵詞:雙嵌段共聚物溶劑退火
外文關鍵詞:Block copolymerSolvent annealingSolvent evaporation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:199
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention in the past decade, and a variety of appealing applications in different research areas have been suggested by using the nanostructured thin films. To create useful BCP thin films for practical uses, controlled ordering of self-assembled nanostructures is essential. In this study, we aim to fabricate gyroid-forming thin films with controlled orientation through different solvent evaporation rates after solvent swelling a degradable BCP, polystyrene-block-poly(L-lactide) (PS-PLLA), thin film. The morphological evolution during solvent evaporation is examined, and interesting phase transitions from disorder to parallel cylinder and then perpendicular cylinder, finally gyroid can be found while using a partially selective solvent for PS to swell the PS-PLLA thin film. Moreover, during transitions, characteristic crystallographic plane of (111)G, (110)G and (211)G of the gyroid-forming thin film parallel to the air surface can be observed, and will gradually transform into the (110)G and (211)G co-existing planes, and finally transform to (211)G plane due to the preferential segregation of one block to the surface that affects the relative amount of each component on the air surface. Moreover, the phase transitions during evaporation are dependent upon the evaporation rate; by decreasing the evaporation rate, the parallel cylinders will transform directly to (211)G without the transitions to perpendicular cylinder phase and co-exist crystallographic planes of the gyroid.
Although controlled solvent evaporation is a facile approach to prepare gyroid-forming thin films, the fabrication of long-range nanostructured thin films remains challenging. It is critical to increase the grain size of gyroid-forming thin film with controlled orientation. Herein, we aim to suggest a strategy for ordering the gyroid-forming thin films with large-size monograin by using PS stabilized Au nanoparticles addressing onto the thin film through solvent swelling followed by evaporation. With the introduction of the nanoparticles, the energy barrier for the nucleation of microphase separation is largely reduced and the growth of large-size monograin might be initiated from the nanoparticles resulting from the control of the nucleation density (the amount of nanoparticles introduced).
The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention in the past decade, and a variety of appealing applications in different research areas have been suggested by using the nanostructured thin films. To create useful BCP thin films for practical uses, controlled ordering of self-assembled nanostructures is essential. In this study, we aim to fabricate gyroid-forming thin films with controlled orientation through different solvent evaporation rates after solvent swelling a degradable BCP, polystyrene-block-poly(L-lactide) (PS-PLLA), thin film. The morphological evolution during solvent evaporation is examined, and interesting phase transitions from disorder to parallel cylinder and then perpendicular cylinder, finally gyroid can be found while using a partially selective solvent for PS to swell the PS-PLLA thin film. Moreover, during transitions, characteristic crystallographic plane of (111)G, (110)G and (211)G of the gyroid-forming thin film parallel to the air surface can be observed, and will gradually transform into the (110)G and (211)G co-existing planes, and finally transform to (211)G plane due to the preferential segregation of one block to the surface that affects the relative amount of each component on the air surface. Moreover, the phase transitions during evaporation are dependent upon the evaporation rate; by decreasing the evaporation rate, the parallel cylinders will transform directly to (211)G without the transitions to perpendicular cylinder phase and co-exist crystallographic planes of the gyroid.
Although controlled solvent evaporation is a facile approach to prepare gyroid-forming thin films, the fabrication of long-range nanostructured thin films remains challenging. It is critical to increase the grain size of gyroid-forming thin film with controlled orientation. Herein, we aim to suggest a strategy for ordering the gyroid-forming thin films with large-size monograin by using PS stabilized Au nanoparticles addressing onto the thin film through solvent swelling followed by evaporation. With the introduction of the nanoparticles, the energy barrier for the nucleation of microphase separation is largely reduced and the growth of large-size monograin might be initiated from the nanoparticles resulting from the control of the nucleation density (the amount of nanoparticles introduced).
Abstract ................................................................................................................... I
Content ................................................................................................................. III
List of Figures ....................................................................................................... V
Chapter 1 Introduction......................................................................................... 1
1.1 Self-assembly of Block Copolymers (BCPs)............................................. 1
1.2 Self-assembly of BCP Thin Films.............................................................. 5
1.2.1 Effects of surface fields on BCP thin films ...................................... 6
1.2.1.1 Substrate effects...................................................................... 6
1.2.1.1 Air surface effects................................................................... 7
1.2.1 Confinement effects on BCP thin films............................................ 8
1.2.2 Mutual effects of substrate and confinement on BCP thin films ... 10
1.3 Nanostructured Thin Films from BCP Self-assembly.............................. 11
1.3.1 Oriented nanostructured thin films from BCP self-assembly ........ 11
1.3.1.1 Temperature gradient-induced orientation ........................... 12
1.3.1.2 Electric field-induced orientation......................................... 12
1.3.1.3 Crystallization-induced orientation ...................................... 13
1.3.1.4 Shear-induced orientation..................................................... 14
1.3.1.5 Surface-induced orientation................................................. .15
1.3.1.6 Solvent-annealing-induced orientation................................. 16
1.3.1.7 Solvent-evaporation-induced orientation ............................. 18
1.3.2 Directed self-assembly ....................................................................z0
1.3.2.1 Graphoepitaxy ...................................................................... 21
1.3.2.2 Chemical patterned surface .................................................. 23
1.3.3 Nanoporous thin films from degradable BCPs .............................. 25
1.3.3.1 Dry process ........................................................................... 25
1.3.3.2 Wet process........................................................................... 29
Chapter 2 Objectives........................................................................................... 32
Chapter 3 Experimental Methods ..................................................................... 34
II
3.1 Materials................................................................................................... 34
3.2 Experimental Section ............................................................................... 34
3.3 Instrumentation......................................................................................... 35
Chapter 4 Results and Discussions .................................................................... 37
4.1 Ordering of BCP Nanostructured Thin Films Driven by Solvent
Evaporation .............................................................................................. 37
4.1.1 Morphologies of spin-coated BCP thin films................................. 38
4.1.2 Swelling degree by Solvent Annealing .......................................... 39
4.2 Morphology Evolution Induced by Solvent Evaporation ........................ 42
4.2.1 Evolution of Surface Morphology During Solvent Evaporation ... 43
4.2.2 Origins of morphological evolution under solvent evaporation .... 45
4.2.3 Morphology Evolution as a Function of Solvent Evaporation Rate……………………………………………………………………49
4.3 Morphology Evolution Induced from Functionalized Substrate ............. 52
4.3.1 Functionalized Substrate by Homopolymer of PS and PLLA....... 52
4.3.2 Induced Orientation from Functionalized Substrate ...................... 53
4.4 Synthesis of PS Stabilized Au Nanoparticle ............................................ 55
4.4.1 Synthesis and Characterization of PS-Br ....................................... 56
4.4.2 Synthesis and Characterization of PS-SH...................................... 57
4.4.3 Synthesis and Analysis of PS Stabilized Au nanoparticle.............. 59
Chapter 5 Conclusions ........................................................................................ 61
Chapter 6 References .......................................................................................... 63
1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
9. Lodge, T. P. Macromol. Chem. Phys. 2003, 204, 265.
10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
17. Leibler, L. Macromolecules 1980, 13, 1602.
18. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *