帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張瑋玲
作者(外文):Chang, Wei-Lin
論文名稱(中文):以亞硝基硫醇化二氧化矽奈米粒子作為一氧化氮遞送系統之製備及其性質之研究
論文名稱(外文):Preparation and Characterization of S-Nitrosothiol-Modified Silica Nanoparticles as Nitric Oxide Delivers
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):胡德民
邱士娟
口試委員(外文):Hu, Teh-Min
Chiu, Shih-Jiuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032541
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:110
中文關鍵詞:一氧化氮遞送系統二氧化矽奈米粒子
外文關鍵詞:Nitric OxideSilica Nanoparticles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:396
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究主要是以二氧化矽奈米粒子的表面改質,製備nitric oxide (NO)遞送系統。利用二氧化矽奈米粒子表面的矽烷醇基與 4-Isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenyl methane (MIA) 上的 isocyanate官能基具有的高反應性,成功將二氧化矽奈米粒子表面化學官能基化,並命名為SIA。之後分為兩種合成方式,其一是利用改質後的SIA具 azetidine-2,4-dione官能基,可將具胺官能基的chitosan (CS) 接枝於二氧化矽奈米粒子表面,再與thioglycolic acid (TGA) 反應,成功將thiol接枝於二氧化矽奈米粒子表面,命名為SCSH。
另一種方法,則是利用一級胺與羧酸的良好反應性,將CS與TGA反應為CT,再與SIA的azetidine-2,4-dione官能基反應,亦成功將thiol接枝於二氧化矽奈米粒子表面,命名為SCT。SCSH及SCT上的thiol經亞硝基化反應,可形成具有NO釋放功能的硫-亞硝基硫醇化二氧化矽奈米粒子,分別命名為SCSNO及SCTNO。
所形成的二氧化矽奈米粒子,可由FT-IR、ESCA、SLS、SEM、TEM鑑定其結構,並以TGA、Ellman assay、Griess assay做定量分析,測定其thiol含量及NO載量。其中每mg的SCSNO可攜帶0.08 μmol的NO,每mg的SCTNO則可攜帶0.17 μmol的NO,成功以新的合成方式製備具NO釋放能力的二氧化矽奈米粒子。
The subject of this study is to develop a novel approach to synthesize functional silica nanoparticles which have the abilities of NO storage and controlled release via RSNOs donor. The bifunctional reactive agent of 4- isocyanato- 4'-( 3,3'- dimethyl- 2, 4- dioxo- azetidino ) diphenyl methane (MIA) is employed to modify the surface of silica nanoparticles. Consequently, the isocyanate group of MIA reacts with silanol groups of silica nanoparticles while the azetidine-2,4-dione group of MIA demonstrates a high reactivity and selectivity with primary amine groups of chitosan. Furthermore, NO donors are formed by incorporation thiolglycolic acid into chitosan structure via exposed to acidified nitrite. Moreover, we also try the other different synthetic method by combining thiol group and chitosan first before amine group modifying silica nanoparticles. The chemical structures of nanoparticles are confirmed by FT-IR, ESCA, SLS, SEM, TEM. Additionally, we use Ellman assay to quantify the amount of thiol groups on modified silica nanoparticles, and the characterization of NO release is observed by Griess assay.The results presented here show that SCTNO particles can be more promising NO release system than SCSNO particles, the former demonstrate the NO storage of 0.17 μmol NO/ mg particle while the latter with 0.08 μmol NO/ mg particle.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1. 一氧化氮的性質及應用 1
1-2. 一氧化氮釋放劑 6
1-3. 奈米粒子 14
1-3-1. 聚合物質 14
1-3-2. 脂質物質 17
1-3-3. 無機物質 18
1-4. 研究動機 20
第二章 文獻回顧 22
2-1. 一氧化氮含矽奈米粒子 22
2-2. 4-Isocyanato-4’(3 , 3-dimethyl-2,4-dioxo-azetidino) diphenyl methane (MIA) 31
2-3. 幾丁聚醣 38
第三章 實驗材料與方法 46
3-1. 實驗藥品 46
3-2. 儀器設備 48
3-3. 單體合成 50
3-3-1. MIA之合成 [31] 50
3-4. 亞硝基硫醇化二氧化矽奈米粒子I.合成 52
3-4-1. SIA之合成 [33] 52
3-4-2. SC之合成 [35] 53
3-4-3. SCSH之合成 [41] 54
3-4-4. SCSNO之合成 [28] 55
3-5. 亞硝基硫醇化二氧化矽奈米粒子II..合成 56
3-5-1. CT之合成 [41] 56
3-5-2. SCT之合成 [35] 57
3-5-3. SCTNO之合成 [28] 58
3-6. 一氧化氮釋放行為觀察 59
3-6-1. SCSNO及SCTNO於不同時間的UV-Vis光譜 59
3-6-2. Ellman assay 60
3-6-3. Griess assay 61
第四章 結果分析與應用討論 63
4-1. 單體結構鑑定 64
4-1-1. MIA結構鑑定 64
4-2. 二氧化矽表面改質I. 67
4-2-1. SIA結構鑑定及性質分析 67
4-2-2. SC結構鑑定及性質分析 72
4-2-3. SCSH結構鑑定及性質分析 76
4-2-4. SCSH的Ellman分析 81
4-3. 二氧化矽表面改質II. 83
4-3-1. CT結構鑑定及性質分析 83
4-3-2. SCT結構鑑定及性質分析 87
4-3-3. SCT的Ellman分析 92
4-4. 亞硝基硫醇化二氧化矽奈米粒子結果分析 93
4-4-1. 硫醇化二氧化矽奈米粒子結構鑑定及性質分析 93
4-4-2. SCSNO於不同時間的UV-Vis光譜 97
4-4-3. SCSNO及SCTNO的Griess分析 99
4-4-4. SCSH/SCSNO與SCT/SCTNO實驗結果比較 103
第五章 結論 105
第六章 參考文獻 107
1. Arnold, W. P.; Mittal, C. K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. P Natl Acad Sci USA, 1977, 74( 8), 3203– 3207.
2. Furchgott, R. F.; Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288( 27), 373– 376.
3. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. P Natl Acad Sci USA, 1987, 84, 9265– 9269.
4. Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327( 11), 524– 526.
5. Ignarro, L.J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol, 1990, 30, 535– 560.
6. Forstermann, U.; Closs, E. I.; Pollock, J. S.; Nakane, M.; Schwarz, P.; Gath, I.; Kleinert, H. Nitric oxide synthase isozymes: Characterization, purification, molecular cloning,and functions. Hypertension, 1994, 23( 6), 1121– 1131.
7. Carpenter, A.W.; Schoenfisch, M. H. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev, 2012, 41( 10), 3742– 3752.
8. Coneski, P. N.; Schoenfisch, M. H. Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev, 2012, 41( 10), 3753– 3758.
9. Luiking, Y. C.; Engelen, M. P.; Deutz, N. E. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr, 2010, 13( 1), 97– 104.
10. Scatena, R.; Bottoni, P.; Pontoglio, A.; Giardina, B. Pharmacological modulation of nitric oxide release new pharmacological perspectives, potential benefits and risks. Curr Med Chem, 2010, 17( 1), 61– 73.
11. Fitzhugh, A. L.; Keefer, L. K. Diazeniumdiolates: Pro- and antioxidant applications of the“NONOates”. Free Radical Bio Med, 2000, 28( 10), 1463– 1469.
12. Hogg, N. Biological chemistry and clinical potential of S-nitrosothiols. Free Radical Bio Med, 2000, 28( 10), 1478– 1486.
13. Jain, R.; Shah, N.H.; Malick A.W.; Rhodes C.T. Controlled drug delivery by biodegradable poly(ester) devices: Different preparative approaches. Drug Dev Ind Pharm, 1998, 24( 8), 703– 727.
14. Kanayama, N.; Yamaguchi, K.; Nagasaki, Y. PEGylated Polymer Micelle-based Nitric Oxide (NO) Photodonor with NO-mediated Antitumor Activity. Chem Lett, 2010, 39( 9), 1008– 1009.
15. Stasko, N. A.; Schoenfisch, M. H. Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc, 2006, 128( 25), 8265– 8271.
16. Stasko, N. A.; Fischer, T. H.; Schoenfisch, M. H. S-nitrosothiol-modified dendrimers as nitric oxide delivery. Biomacromolecules, 2008, 9( 3), 834– 841.
17. Friedman, A. J.; Han, G.; Navati, M. S.; Chacko, M.; Gunther, L.; Alfieri, A.; Friedman, J. M. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide, 2008, 19( 1), 12– 20.
18. Rothrock, A. R.; Donkers, R. L.; Schoenfisch, M. H. Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc, 2005, 127( 26), 9362– 9363.
19. Polizzi, M. A.; Stasko, N. A.; Schoenfisch, M. H. Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir, 2007, 23( 9), 4938– 4943.
20. Blanco, P. T.; Santos, V. P.; Juste, J. P.; Hervés, P. Controllable nitric oxide release in the presence of gold nanoparticles. Langmuir, 2013, 29( 25), 8061– 8069.
21. Stevens, E. V.; Carpenter, A. W.; Shin, J. H.; Liu,J.; Der, C. J.; Schoenfisch, M. H. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm, 2010, 7( 3), 775– 785.
22. Ridnour, L. A.; Thomas, D. D.; Switzer, C.; Santana, W. F.; Isenberg, J. S.; Ambs, S.; Roberts, D. D.; Wink, D. A. Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide, 2008, 19( 2), 73– 76.
23. Zhang, H.; Annich, G. M.; Miskulin, J.; Stankiewicz, K.; Osterholzer, K.; Merz, S. I.; Bartlett, R. H.; Meyerhoff, M. E. Nitric oxide-releasing fumed silica particles: Synthesis,characterization, and biomedical application. J Am Chem Soc, 2003, 125( 17), 5015– 5024.
24. Shin, J. H.; Metzger, S. K.; Schoenfisch, M. H. Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc, 2007, 129( 15), 4612– 4619.
25. Shin, J. H.; Schoenfisch, M. H. Inorganic/Organic hybrid silica nanoparticles as a nitric oxide. Chem Mater, 2008, 20( 1), 239– 249.
26. Frost, M. C.; Meyerhoff, M. E. Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles. J Biomed Mater Res A, 2005, 72( 4), 409– 419.
27. Riccio, D. A.; Nugent, J. L.; Schoenfisch, M. H. Stober synthesis of nitric oxide-releasing S-nitrosothiol-modified silica particles. Chem Mater, 2011, 23( 7), 1727– 1735.
28. Hu, T. M.; Chou, H. C.; Chiu, S. J.; Liu, Y. L. Direct formation of S-Nitroso silica nanoparticles from a single silica source. Langmuir, 2014, 30, 812− 822
29. Zhang, X. F.; Mansouri, S.; Mbeh, D. A.; Yahia, L. H.; Sacher, E.; Veres, T. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility. Langmuir, 2012, 28( 35), 12879– 12885.
30. Tsai, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. Synthesis and montmorillonite-intercalated behavior of dendritic surfactants. J Mater Chem, 2006, 16( 21), 2056–2063.
31. Chang, H. L.; Chao, T. Y.; Yang, C. C.; Dai, S. A.; Jeng, R. J. Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione. Eur Polym J, 2007, 43( 9), 3988– 3996.
32. Shau, S. M.; Chang, C. C.; Lo, C. H.; Chen, Y. C.; Juang, T. Y.; Dai, S. A.; Lee, R. H.; Jeng, R. J. Organic/Metallic nanohybrids based on amphiphilic dumbbell-shaped dendrimers. ACS Appl Mater Inter, 2012, 4( 4) 1897– 1908.
33. Liu, Y. L.; Wua, Y. H.; Jeng, R. J.; Dai, S. A. Functionalization of silica nanoparticles with 4-isocyanato-4'-(3,3'-dimethyl-2,4-dioxo-azetidino)diphenyl methane, surface chemical reactivity and nanohybrid preparation. J Colloid Interf Sci, 2009, 336( 1), 189– 194.
34. Liu, Y. L.; Wu, Y.H.; Hsu, C.Y. Direct white light photoluminescent nanoparticles with one fluorophore. Nanotechnology, 2009, 20( 23), 235704.
35. Liu, Y. L.; Wu, Y. H.; Tsai, W. B.; Tsai, C. C.; Chen, W. S.; Wu, C. S. Core–shell silica@chitosan nanoparticles and hollow chitosan nanospheres using silica nanoparticles as templates: Preparation and ultrasound bubble application. Carbohyd Polym, 2011, 84( 2), 770– 774.
36. Kumar, M.N.V.R. A review of chitin and chitosan applications. React Funct Polym, 2000, 46, 1– 27.
37. Wan, A.; Sun,Y. ; Li, H. Characterization of folate-graft-chitosan as a scaffold for nitric oxide release. Int J Biol Macromol, 2008, 43( 5), 415– 521.
38. Wan, A.; Gao, Q.; Li, H. Effects of molecular weight and degree of acetylation on the release of nitric oxide from chitosan-nitric oxide adducts. J Appl Polym Sci, 2010, 117( 4), 2183– 2188.
39. Tan, L.; Wan, A.; Li, H.; Lu, Q. Novel quantum dots-carboxymethyl chitosan nanocomposite nitric oxide donors capable of detecting release of nitric oxide in situ. Acta Biomater, 2012. 8(10), 3744– 3753.
40. Marcato, P. D.; Adami, L. F.; Melo, P. S.; Paula, L. P. D.; Durán1, N,; Seabra, A. B. Glutathione and S-nitrosoglutathione in alginate/chitosan nanoparticles: Cytotoxicity. J Phys Conf Ser, 2011, 304, 012– 045.
41. Ayensu, I. Mitchell, J. C.; Boateng, J. S. In vitro characterisation of chitosan based xerogels for potential buccal delivery of proteins. Carbohyd Polym, 2012, 89, 935– 941
42. Saboktakin, M. R.; Tabatabaie, R. M.; Maharramov, A.; Ramazanov, M. A. Development and in vitro evaluation of thiolated chitosan—Poly( methacrylic acid) nanoparticles as a local mucoadhesive delivery system. Int J Biol Macromol, 2011, 48(3), 403– 407.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *