帳號:guest(18.188.181.248)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖建華
論文名稱(中文):蒸餾與氣相滲透複合製程在異丙醇分離的應用
論文名稱(外文):Hybrid Process of Distillation and Vapor Permeation in the Application of Isopropyl Alcohol Separation
指導教授(中文):汪上曉
口試委員(中文):劉佳霖
劉英麟
錢義隆
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032539
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:蒸餾氣相滲透複合製程異丙醇薄膜
相關次數:
  • 推薦推薦:0
  • 點閱點閱:376
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
蒸餾與薄膜分離的複合製程概念最先在1950年代被提出來,在後來的文獻中,亦有眾多方向的探討。然而,文獻鮮少探討蒸餾與薄膜分離的複合製程中,薄膜的何種性質是影響整體製程的關鍵。此外,對於膜材既定的觀念與性質指標在設計複合製程中是否仍舊適合,仍需進一步的探討。本論文為實現薄膜分離系統的商業效益,使用模擬軟體Aspen Plus V8.4,配合氣相滲透(Vapor Permeantion)實驗數據,整合傳統分離程序與薄膜分離蒸發系統,針對蒸餾與氣相滲透的複合製程,探討了原有對膜材的觀念與指標是否仍舊適合,並且探討不同濃度的異丙醇進料案例中,薄膜性質對於製程操作成本的影響,並與傳統製程進行經濟成本的評估,得到了以下結論:
1.相對於透過量/選擇率會因條件變動,Permeance(m3/m2 hr bar)為評估的指標更適當。
2.針對低濃度(共沸組成的左邊)異丙醇進料
D-VP-D(Distillation-Vapor Permeation-Distillation):高LW是關鍵,進入考慮的製程。
D-VP(Distillation-Vapor Permeation):(1)即使有高LW與高(LW/LIPA),亦不進入考慮的製程。(2)在真空度提高,目標純度由99.95wt%降低為99.6wt%的條件下,節省37%的成本,結論與文獻中的D-PV製程設計相同。
※LW:Permeance of Water,LIPA:Permeance of IPA。
3.針對高濃度(共沸組成的右邊)異丙醇進料
D-VP-D:高LW是關鍵,節省約56%的成本。
D-VP:需擁有高(LW/LIPA) ,進入考慮的製程。
摘要 1
目錄 II
圖目錄 IV
表目錄 1
第一章、簡介 1
一.1研究背景 1
一.2文獻回顧 4
一.2.1傳統分離共沸物的製程 4
一.2.1.1共沸蒸餾法(Azeotrope Distillation) 4
一.2.1.2萃取蒸餾法(Extractive Distillation) 6
一.2.1.3變壓蒸餾法(Pressure Swing Distillation) 8
一.2.2薄膜分離製程 10
一.2.3蒸餾與薄膜分離複合製程 14
二.2.3.1滲透蒸發的複合製程(Pervaporation-based Hybrid Process) 14
二.2.3.2複合製程的改良 18
一.3研究目的 21
第二章、研究方法 22
二.1基本性質與模型 22
二.1.1物質性質 22
二.1.2熱力學性質 23
二.1.3熱力學模型 24
二.1.4平衡板模型 26
二.2薄膜蒸發實驗(VP)與數據處理 28
二.2.1實驗步驟與數據 28
二.2.2ACM中的薄膜模型 31
二.2.3薄膜的平均分割數量(k) 33
二.2.4Permeance的計算 34
二.2.5實驗數據處理 36
二.2.6經濟評估方法 39
第三章、低濃度異丙醇與水的穩態模擬 40
三.1傳統共沸蒸餾法(AZ) 41
三.2單塔與氣相滲透與單塔蒸餾(D-VP-D) 42
三.2.1透過量與選擇率的影響 44
三.2.2VP文獻數據模擬 47
三.3單塔與氣相滲透(D-VP) 51
三.4低濃度異丙醇進料結果與討論 53
三.5與Hoof et al.25文獻結果討論 55
第四章、高濃度異丙醇與水的穩態模擬 57
四.1傳統共沸蒸餾法(AZ) 58
四.2單塔與氣相滲透與單塔蒸餾(D-VP-D) 59
四.3單塔與氣相滲透(D-VP) 62
四.4高濃度異丙醇進料結果與討論 63
第五章、結論 65
參考文獻 65
1.W. Kujawski, Application of Pervaporation and Vapor Permeation in Environmental Protection, Polish Journal of Environmental Studies, 9, 13-26, 2000.
2.L. M. Vane and F. R. Alvarez, Membrane-Assisted Vapor Stripping: Energy Efficient Hybrid Distillation–Vapor Permeation Process for Alcohol–Water Separation, J Chem Technol Biotechnol, 83, 1275–1287, 2008.
3.L. M. Vane, F. R. Alvarez, Y. Huang and R. W. Baker, Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation, J Chem Technol Biotechnol, 85, 502-511, 2010.
4.C. Buchaly, P. Kreis and A. G´orak, Hybrid Separation Processes—Combination of Reactive Distillation with Membrane Separation, Chemical Engineering and Processing, 46, 790–799, 2007.
5.C. S. Slater, M. J. Savelski, T. M. Moroz and M. J. Raymond, Pervaporation as a Green Drying Process for Tetrahydrofuran Recovery in Pharmaceutical Synthesis, Green Chemistry Letters and Reviews, 5, 55-64, 2012.
6.J. Bausa and W. Marquardt, Shortcut Design Methods for Hybrid Membrane / Distillation Processes for the Separation of Nonideal Multicomponent Mixtures, Ind. Eng. Chem. Res., 39, 1658-1672, 2000.
7.A. M. Eliceche, M. C. Daviou, P. M. Hoch and I. O. Uribe, Optimisation of Azeotropic Distillation Columns Combined with Pervaporation Membranes, Computers and Chemical Engineering, 26, 563-573, 2002.
8.M. A. Sosa and J. Espinosa, Feasibility Analysis of Isopropanol Recovery by Hybrid Distillation / Pervaporation Process with the Aid of Conceptual Models, Separation and Purification Technology, 78, 237-244, 2011.
9.S. Sommer and T. Melin, Design and Optimization of Hybrid Separation Processes for the Dehydration of 2-Propanol and Other Organics, Ind. Eng. Chem. Res., 43, 5248-5259, 2004.
10.J. B. Haelssig, A. Y. Tremblay, J. Thibault and X.M Huang, Membrane Dephlegmation: A Hybrid Membrane Separation Process for Efficient Ethanol Recovery, Journal of Membrane Science, 381, 226-236, 2011.
11.J. B. Haelssig, J. Thibault and A. Y. Tremblay, Numerical Investigation of Membrane Dephlegmation: A Hybrid Pervaporation–Distillation Process for Ethanol Recovery, Chemical Engineering and Processing, 50, 226-236, 2011.
12.J. B. Haelssig, A. Y. Tremblay and J. Thibault, A New Hybrid Membrane Separation Process for Enhanced Ethanol Recovery: Process Description and Numerical Studies, Chemical Engineering Science, 68, 492-505, 2012.
13.D. Rodrigues, D. Foglia, W. Wukovits and A. Friedl, Model Development of a Membrane Gas Permeation Unit for the Separation of Hydrogen and Carbon Dioxide, CHEMICAL ENGINEERING TRANSACTIONS, 21, 1303-1308, 2010.
14.A. Verhoef, J. Degr`eve, B. Huybrechs, H. V. Veen, P. Pex and B. V. D. Bruggen, Simulation of a Hybrid Pervaporation–Distillation Process, Computers and Chemical Engineering, 32, 1135-1146,2008.
15.W. L. Luyben, Control of a Column / Pervaporation Process for Separating the Ethanol / Water Azeotrope, Ind. Eng. Chem. Res., 48, 3484-3495, 2009.
16.S.-J. Wang, David S. H. Wong and S.-W. Yu, Effect of Entrainer Loss on Plant-Wide Design and Control of an Isopropanol Dehydration Process, Ind. Eng. Chem. Res., 47, 6672-6684, 2008.
17.I. D. Gil, A. M. Uyazán, J. L. Aguilar, G. Rodríguez and L. A. Caicedo, Separation of Ethanol and Water by Extractive Distillation with Salt and Solvent as Entrainer: Process Simulation, Brazilian Journal of Chemical Engineering, 25, 207-215, 2008.
18.J. Fontalvo, P. Cuellar, J. M. K. Timmer, M. A. G. Vorstman, J. G. Wijers and J. T. F. Keurentjes, Comparing Pervaporation and Vapor Permeation Hybrid Distillation Processes, Ind. Eng. Chem. Res., 44, 5259-5266, 2005.
19.王大銘, 滲透蒸發技術之發展, 國立臺灣大學「台大工程」學刊, 84, 119-127, 2002.
20.X. Feng and R. Y. M. Huang, Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res., 36, 1048-1066, 1997.
21.P. D. Chapman, Teresa Oliveira, Andrew G. Livingston and K. Li, Membranes for the Dehydration of Solvents by Pervaporation, Journal of Membrane Science, 318, 15-37, 2008.
22.W. F. Guo, T.S Chung and T. Matsuura, Pervaporation Study on the Dehydration of Aqueous Butanol Solutions: a Comparison of Flux vs. Permeance, Separation Factor vs. Selectivity, Journal of Membrane Science, 245, 199-210, 2004.
23.F. Lipnizki, R. W. Field and P.K Ten, Pervaporation-Based Hybrid Process: a Review of Process Design, Applications and Economics, Journal of Membrane Science, 153, 183-210, 1999.
24.J. A. Caballero, I. E. Grossmann, M. Keyvani and E. S. Lenz, Design of Hybrid Distillation-Vapor Membrane Separation Systems, Ind. Eng. Chem. Res., 48, 9151-9162, 2009.
25.V. V. Hoof, L. V. D. Abeele, A. Buekenhoudt, C. Dotremont and R. Leysen, Economic Comparison Between Azeotropic Distillation and Different Hybrid Systems Combining Distillation with Pervaporation for the Dehydration of Isopropanol, Separation and Purification Technology, 37, 33-49, 2004.
26.Y. Huang, R. W. Baker and L. M. Vane, Low-Energy Distillation-Membrane Separation Process, Ind. Eng. Chem. Res.,49 , 3760-3768, 2010.
27.Rodrigues D., Model Development of a Membrane Gas Permeation Unit for the Separation of Hydrogen and Carbon Dioxide, Master Thesis, Universidade Tecnica de Lisboa, Lisbon, Portugal, 2009.
28.W. L. Luyben et al. (2010), Design and Control of Distillation Systems for Separating Azeotropes (1st ed.). Hoboken, New Jersey : John Wiley & Sons.
29.B. Bolto, M. Hoang and Z. Xie, A Review of Water Recovery by Vapour Permeation through Membranes, water research, 46, 259-266, 2012.
30.M. Kondo, T. Yamamura, T. Yukitake, Y. Matsuo, H. Kita and K.I Okamoto, IPA Purification for Lens Cleaning by Vapor Permeation using Zeolite Membrane, Separation and Purification Technology, 32, 191-198, 2003.
31.J. Albo, J. Wang and T. Tsuru, Application of Interfacially Polymerized Polyamide Composite Membranes to Isopropanol Dehydration: Effect of Membrane Pre-Treatment and Temperature, Journal of Membrane Science, 453, 384-393, 2014.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *