帳號:guest(18.220.195.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韓維剛
作者(外文):Han, Wei Kang
論文名稱(中文):以反應性添加型改質劑製備低介電聚亞醯胺材料及其性質研究
論文名稱(外文):Preparation of low-dielectric-constant polyimides with reactive-type additives
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying Ling
口試委員(中文):鄭如忠
賴君義
口試委員(外文):Jeng, Ru Jong
Lai, Juin Yih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032537
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:106
中文關鍵詞:聚亞醯胺低介電多面體低聚倍半矽氧烷
外文關鍵詞:PolyimidedielectricPolyhedral oligomeric silsesquioxane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:490
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本研究以聚亞醯胺(polyimide, PI)為基材,利用反應型改質劑,如帶有八個甲基丙烯酸甲酯官能基的多面體低聚倍半矽氧烷(MMA-POSS)、帶有一個甲基丙烯酸甲酯官能基和七個異丁基的多面體低聚倍半矽氧烷(MAI-POSS)、以及含有雙氧代氮代苯并環己烷(benzoxazine)官能基的橋式聚倍半矽氧烷單體(BPA-APTES-Bz)等,探討添加此等改質劑對於聚亞醯胺高分子之介電常數的影響。將以上三種改質劑分別直接與聚醯胺酸溶液摻混,經塗佈成膜後以熱環化方式製備聚亞醯胺複合材料。於MMA-POSS添加比例為10 wt%時,聚亞醯胺薄膜的拉伸強度由原來的161 MPa上升至224 MPa,補強效果提升了34 %;於MAI-POSS添加比例達15 wt%時,薄膜拉伸強度由161 MPa上升至189 MPa,補強效果提升17 %。介電常數部分,在頻率為5 GHz時,純聚亞醯胺之介電常數為3.6左右,於MMA-POSS摻混比例為15 wt%時,其介電常數降至3.35,而添加MAI-POSS之摻混比例為15 wt%時,介電常數則降至3.09,此外,BPA-APTES-Bz之摻混比例為20 wt%時,聚亞醯胺複合膜的介電常數則降至3.11。以上結果顯示三種改質劑皆能以簡單容易的操作方法來製備低介電的聚亞醯胺複合材料,並能發揮補強作用,有效地提高其機械強度。
Polyimides have been modified with reactive additives, including methylmethacrylate POSS (MMA-POSS), methacrylisobutyl POSS (MAI-POSS) and benzoxazine-bridged bis(trialkoxysilne) compound (BPA-APTES-Bz), to reduce the dielectric constants and increase the mechanical strength of polyimides.The MMA-POSS/PI composite film with 10 wt% MMA-POSS exhibits a 34 % increase in tensile strength and the MAI-POSS/PI composite film with 15 wt% MAI-POSS exhibits a 17 % increase in tensile strength, compared to with the neat PI sample. Addition of the POSS additives significantly decreases the dielectric constants (Dk) of the PI samples. At 5 GHz, the Dk values drop from 3.6 to 3.35 with PI composites having 15 wt% of MMA-POSS and to 3.09 with PI composites having 15 wt% of MAI-POSS. Moreover, the Dk value of the PI sample with 20 wt% of BPA-APTES-Bz is 3.11. A simple and effective approach to prepare low-Dk PI composite films has been developed.
目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 聚亞醯胺(Polyimide)簡介 2
1-3 研究方向 6
第二章 文獻回顧 7
2-1 低介電材料簡介 7
2-2 低介電聚亞醯胺簡介 8
2-2-1 改變聚亞醯胺化學結構製備低介電材料 8
2-2-2 POSS製備低介電聚亞醯胺複合材料 18
2-2-3 MMA-POSS製備低介電複合材料 47
第三章 實驗 53
3-1 實驗藥品 53
3-2 儀器設備 55
3-3 實驗步驟 57
3-3-1 製備MMA-POSS/PI複合材料 57
3-3-2 製備MAI-POSS/PI複合材料 58
3-3-3 製備BPA-APTES-Bz/PI複合材料 59
3-3-4 介電常數量測原理及方法 61
第四章 結果與討論 63
4-1 前言 63
4-2 MMA-POSS/PI之鑑定及其性質分析 63
4-3 MAI-POSS/PI之鑑定及其性質分析 73
4-4 BPA-APTES-Bz合成及其結構之鑑定分析 82
4-5 BPA-APTES-Bz/PI之鑑定及其性質分析 86
4-6 三種改質劑之綜合分析與比較 97
第五章 結論 99
第六章 參考文獻 100


圖目錄
圖1-1 聚亞醯胺化學結構 2
圖1-2 合成及亞胺化過程製備聚亞醯胺 4
圖2-1 Cntchley之含氟聚亞醯胺合成方式[26] 9
圖2-2 6FDA-PI 合成方式[26] 10
圖2-3 合成奈米孔洞之含氟聚亞醯胺示意圖[34] 11
圖2-4接枝濃度0.37之PEGMA支鏈裂解(a)前(b)與(c)接枝濃度0.44支鏈裂解後之FPI-g-PEGMA之FESEM截面圖[34] 13
圖2-5三嵌段共聚物合成示意圖[35] 14
圖2-6 孔洞率分別為(a) 8 (b) 16 (c) 27 之三嵌段共聚物的截面SEM圖[35] 15
圖2-7 合成多脂環芳香族結構的聚亞醯胺之單體[37] 16
圖2-8 不同化學結構之聚亞醯胺[37] 16
圖2-9 具有二胺官能基之POSS合成示意圖[38] 19
圖2-10 二胺官能基之POSS與ODA以及PMDA共聚形成聚亞醯胺[38] 20
圖2-11 摻混比例為(a)5 mol%(b)10 mol%(c)16 mol%之POSS/PMDA-ODA奈米複合材料之TEM截面圖[38] 21
圖2-12 製備PI-POSS混成材料示意圖[39] 22
圖2-13 SEM cross-section analysis of PI–POSS hybrid materials (a) PI-3P , (b) PI-7P , (c) PI-10P , (d) Fractured cross-section surface of the PI-10P.[39] 23
圖2-14 含有PEO官能基之POSS合成圖[40] 24
圖2-15 PEO熱不穩定性裂解成小分子產生孔洞示意圖[40] 25
圖2-16 製備側鏈接枝上PMA-POSS之聚亞醯胺奈米複合材料[41] 26
圖2-17 FE-SEM of fractured surface of (a)the pristine PI film,and the PI-gPMA-POSS nanocomposite films containing(b) 23.5 mol% and(c)18.9 mo%MA-POSS[41] 27
圖2-18 帶有四環氧基和四含氟基團之POSS[42] 28
圖2-19 PI/OFG奈米複合材料之化學結構[42] 29
圖2-20 POSS於OFG/PI當中的分散程度之FE-SEM圖(a) 3 wt%(b) 7 wt% (c) 10 wt%(d) 15 wt%之POSS含量[42] 30
圖2-21 製備DDSQ二酸酐示意圖[43] 31
圖2-22 合成主鏈含有POSS之聚亞醯胺[44] 31
圖2-23 POSS-OH合成圖[45] 32
圖2-24 製備PMDA-ODA PI/POSS-OH 複合材料[45] 33
圖2-25 FE-SEM and TEM micrographs of the cross-section of (left) PI/POSS-OH5 and (right) PI/POSS-OH10 (a) PI/POSS-OH5 and (b) PI/ 34
圖2-26 聚亞醯胺之化學結構[46] 35
圖2-27 多層超支狀聚亞醯胺奈米複合材料合成圖[46] 37
圖2-28 BPA-ether diamine合成示意圖[47] 38
圖2-29製備PI-OAPS複合材料示意圖[47] 39
圖2-30 不同摻混比例之複合材料其SEM圖 (a) 純PI (b) 5 wt% OAPS-PI (c) 15 wt% OAPS-PI[47] 40
圖2-31 不同摻混比例之複合材料其TEM圖 (a) 5 wt% OAPS-PI (b) 10 wt% OAPS-PI (c) 15 wt% OAPS-PI[47] 40
圖2-32 (a)ODA-GO(b)PI-GO(c)-PI-ODA-GO之製備過程[48] 41
圖2-33 PI-GO與PI-ODA-GO比較圖以及不同比例之PI-ODA-GO其應力應變曲線圖[48] 42
圖2-34 不同比例之PI-GO和PI-ODA-GO在頻率1MHz至1.8GHz下其介電常數圖[48] 43
圖2-35 OAPS結構圖[49] 43
圖2-36 製備OAPS-GO/PI 複合材料膜示意圖[49] 44
圖2-37 (a) 純PI(3k) (b) 純PI(10k) (c) 3 wt% GO/PI film(3k) (d) 3 wt% GO/PI film(10k) (e)3 wt% OAPS-GO/PI film(3k) (f) 3 wt% OAPS-GO/PI film(10k)之截面SEM圖[49] 45
圖2-38 不同比例之OAPS-GO/PI film的拉伸應力-應變曲線圖[49] 46
圖2-39 純PI與GO/PI film以及OAPS-GO/PI film之介電常數圖[49] 46
圖2-40 MMA-POSS與TF之化學結構示意圖[50] 47
圖2-41 MMA-POSS/TF升溫至220 °C後其(a)外觀(b)TEM圖[50] 48
圖2-42不同化學結構之Benzoxazine與MMA-POSS反應圖[51] 49
圖2-43不同交聯升溫過程下的POSS/PBz之TEM圖[51] 50
圖2-44不同比例之PPBz-POSS之TEM圖[51] 50
圖2-45 介電常數比較圖[51] 51
圖3-1 製備MMA-POSS/PI複合材料示意圖 58
圖3-2製備MAI-POSS/PI複合材料示意圖 59
圖3-3 BPA-APTES-Bz合成示意圖 60
圖3-4 製備BPA-APTES-Bz/PI混成材料示意圖 61
圖3-5 平行電極結構之概念圖 62
圖4-1 MMA-POSS/PI複合膜之FT-IR圖 64
圖4-2 (a)Neat PI (b) PI_MMA-5 (c) PI_MMA-10 (d) PI_MMA-15之截面SEM圖(放大倍率1k) 65
圖4-3 (a)Neat PI (b) PI_MMA-5 (c) PI_MMA-10 (d) PI_MMA-15之截面SEM圖(放大倍率10k) 65
圖4-4 (a)Neat PI (b) PI_MMA-5 (c) PI_MMA-10 (d) PI_MMA-15之截面SEM圖(放大倍率100k) 66
圖4-5 不同比例及升溫溫度之MMA-POSS/PI於空氣下的TGA圖 67
圖4-6不同比例之MMA-POSS/PI之應力-應變曲線圖 68
圖4-7 不同比例之MMA-POSS於PI中的DMA圖譜(tan δ對溫度) 69
圖4-8不同比例之MMA-POSS於PI中的DMA圖譜(Storage Modulus對溫度) 70
圖4-9 不同比例之MMA-POSS/PI吸濕程度隨時間變化圖 71
圖4-10 不同比例之MMA-POSS/PI於頻率5 GHz之其介電常數變化圖 72
圖4-11不同比例之MMA-POSS/PI於頻率5 GHz之其介電損耗變化圖 72
圖4-12 MAI-POSS/PI複合膜之FT-IR圖 73
圖4-13 (a)Neat PI (b) PI_MAI-5 (c) PI_MAI-10 (d) PI_MAI-15之截面SEM圖(放大倍率1k) 74
圖4-14 (a)Neat PI (b) PI_MAI-5 (c) PI_MAI-10 (d) PI_MAI-15之截面SEM圖(放大倍率10k) 75
圖4-15 (a)Neat PI (b) PI_MAI-5 (c) PI_MAI-10 (d) PI_MAI-15之截面SEM圖(放大倍率100k) 75
圖4-16 不同比例之MAI-POSS/PI於空氣下的TGA圖 76
圖4-17不同比例之MMA-POSS/PI之應力-應變曲線圖 77
圖4-18 不同比例之MAI-POSS於PI中的DMA圖譜(tan δ對溫度) 79
圖4-19 不同比例之MMA-POSS於PI中的DMA圖譜(Storage Modulus對溫度) 79
圖4-20不同比例之MAI-POSS/PI吸濕程度隨時間變化圖 80
圖4-21 不同比例之MAI-POSS/PI於頻率5 GHz時其介電常數變化圖 81
圖4-22不同比例之MAI-POSS/PI於頻率5 GHz時其介電損耗變化圖 81
圖4-23 (a)BPA(b)APTES(c)BPA-APTES-Bz之FT-IR圖 83
圖4-24 BPA-APTES-Bz之1H NMR圖譜 84
圖4-25 BPA-APTES-Bz之DSC圖 85
圖4-26 BPA-APTES-Bz/PI複合膜之FT-IR圖 87
圖4-27 (a)Neat PI (b) PI_BPA-10 (c) PI_ BPA-20 (d) PI_ BPA-30之截面SEM圖(放大倍率1k) 88
圖4-28 (a)Neat PI (b) PI_BPA-10 (c) PI_ BPA-20 (d) PI_ BPA-30之截面SEM圖(放大倍率10k) 88
圖4-29 (a)Neat PI (b) PI_BPA-10 (c) PI_ BPA-20 (d) PI_ BPA-30之截面SEM圖(放大倍率100k) 89
圖4-30 不同比例之BPA-APTES-Bz/PI於氮氣下的TGA圖 90
圖4-31 不同比例之BPA-APTES-Bz/PI於空氣下的TGA圖 90
圖4-32不同比例之BPA-APTES-Bz/PI之應力-應變曲線圖 91
圖4-33 不同比例之BPA-APTES-Bz於PI中的DMA圖譜(tan δ對溫度) 93
圖4-34 不同比例之MMA-POSS於PI中的DMA圖譜(Storage Modulus對溫度) 93
圖4-35不同比例之BPA-APTES-Bz/PI吸濕程度隨時間變化圖 94
圖4-36 不同比例之BPA-APTES-Bz/PI於頻率5 GHz時其介電常數變化圖 96
圖4-37 不同比例之BPA-APTES-Bz/PI於頻率5 GHz時其介電損耗變化圖 96
圖4-38 三種改質劑添加到PI中於頻率5 GHz之介電常數比較圖 98
圖4-39三種改質劑添加到PI中於頻率5 GHz之介電損耗比較圖 98


表目錄
表4-1 不同比例之MMA-POSS/PI膜材其應力、應變以及楊氏模數數據表 68
表4-2 不同比例之MAI-POSS/PI膜材其應力、應變以及楊氏模數數據表 78
表4-3 BPA-APTES-Bz之1H NMR圖譜數據整理 84
表4-4不同比例之BPA-APTES-Bz/PI膜材其應力、應變以及楊氏模數數據表 92

1. Bogert M. T. ; Renshaw R. R. , “ 4-amino-0-phthalic acid and some of its derivatives. ”, J. Am. Chem. Soc., 30(7), 1908, 1135-1144 .
2. Fawcett A. H. , “ High value polymers (special publication no. 87) ”, The Royal Society of Chemistry, Cambridge, U. K. , 1991.
3. Ghosh M. K. ; Takekoshi T. , “ Polyimides: fundamentals and applications. ”, Marcel Dekker, Inc., New York, N. Y. , 1996.
4. Wilson D. ; Stenzenberger H. D. ; Hergenrother P. M. , “ Polyimides. ”, Chapman and Hall, New York, N. Y. , 1990.
5. Endrey, A. L. , “ Process for preparing polyimides by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides. ”, US Patent, 3,179,630, 1965, to Dupont Co.
6. Endrey, A. L. , “ Aromatic polyimide particles from polycyclic diamines. ”, US Patent, 3,179,631, 1965, to Dupont Co.
7. Hendrix, W. R. , “ Process for preparing polyimides by treating polyamide-acids with aromatic monocarboxylic acid anhydrides. ”, US Patent, 3,179,632, 1965, to Dupont Co.
8. Endrey, A. L. , “ Aromatic polyimides from meta-phenylene diamine and para-phenylene diamine. ”, US Patent, 3,179,633, 1965, to Dupont Co.
9. Vinogradova S. V. ; Vygodskii Ya. S. ; Vorob’ev V. D. ; Churochkina N. A. ; Chudina L. I. ; Spirina T. N. ; Korshak V. V. , “ Chemical cyclization of poly(Amido-acids) in solution. ”, Polym. Sci. USSR, A16(3), 1974, 584-589.
10. Volksen W. ; Miller R. D. ; Dubois G. , “ Low dielectric constant materials. ”, Chem. Rev., 100, 2010, 56–110.
11. Morgen M. ; Ryan E. T. ; Zhao J. H. ; Hu C. ; Cho T. ; Ho P. S. , “ Low dielectric constant materials for ULSI interconnects. ”, Annu. Rev. Mater. Sci., 30, 2000, 645-680.
12. Maex K. ; Baklanov M. R. ; Shamiryan D. ; Lacopi F. ; Brongersma S. H. ; Yanovitskaya Z. S. , “ Low dielectric constant materials for microelectronics. ”, J. Appl. Phys., 93, 2003, 8793.
13. Raju G. G. , “ Dielectrics in electrical fields. ”, Marcel Dekker Inc., New York, 2003.
14. Grill A. ; Patel V. , “ Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane. ”, J. Appl. Phys., 85, 1999, 3314.
15. Grill A. ; Perraud L. ; Patel V. ; Jahnes C. ; Cohen S. , “ Low dielectric constant SiCOH films as potential candidates for interconnect dielectrics. ”, Mater. Res. Soc., 565, 1999, 107.
16. Nara A. ; Itoh H. , “ Low dielectric constant insulator formed by downstream plasma CVD at room temperature using TMS/O2. ”, Jpn. J. Appl. Phys., 36, 1997, 1477-1480.
17. Baney R. H. ; Itoh M. ; Sakakibara A. ; Suzuki T. , “ Silsesquioxanes. ”, Chem. Rev., 95, 1995, 1409-1430.
18. Provatas A. ; Matisons J. G. , “ Silsesquioxanes : synthesis and applications. ”, Trends Polym. Sci., 5(10), 1997, 322-327.
19. Voronkov M. G. ; Lavrent'yev V. I. , “ Polyhedral oligosilsesquioxanes and their homo delivatives. ”, Topics in Current Chemistry, vol. 102, 1982, 199-236.
20. Goto K. ; Akiike T. ; Konno K. ; Shiba T. ; Patz M. ; Takahashi M. ; Inoue Y. ; Matsubara M. , “ Thermally stable polyarylenes with low dielectric constant : direction towards the lowest limit of dielectric. ”, J. Photopolym. Sci. Technol., vol 15, 2002, 223-230.
21. Maier G. , “ Low dielectric constant polymers for microelectronics. ”, Prog. Polym. Sci., 26, 2001, 3-65.
22. Miwa T. , “ Polyimides in microelectronics applications. ”, J. Photopolym. Sci. Technol., vol 14, 2001, 29-32.
23. Treichel H. ; Ruhl G. ; Ansmann, P. ; Wurl R. ; Muller C. ; Dietlmeier M. , “ Low dielectric constant materials for interlayer dielectric:(invitwe paper). ” M.Microelectron. Eng., 40, 1998, 1-19.
24. Treichel H. ; Withers B. ; Ruhl G. ; Ansmann P. ; Wurl R. ; Muller C. ; Dietlmeier M. ; Maier G. , “ Handbook of low and high dielectric constant materials and their applications. ”, Academic Press, San Diego, 1999, 1-71.
25. Frye D. ; Mohler C. , “ Low-k & ultra-low-k metrology comes to the rescue. ”, International Conference on Characterization and Metrology for ULSI Technology, 2005.
26. Sasaki S. ; Ando S. ; Matsuura T. , “ Synthesis and properties of partially fluorinated polyimides for optical applications. ”, Plenum Press, New York, 1999, 305-350.
27. Jeong K. U. ; Kim J. J. ; Yoon T. H. , “ Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. ”, Polymer, 42, 2001, 6019–6030.
28. Carraher Jr. C. E. ; Currell B. ; Pittman Jr. C. ; Sheats J. ; Zeldin M. , “ Inorganic and metal-containing polymeric materials. ”, Plenum Press, New York, 1990, 406.
29. St. Clair A. K. ; St. Clair T. L. ; Slemp W. S. ; Ezzell K. S. , “ Optically transparent/colorless polyimides. ”, NASA Technical Memorandum, 87650, 1985.
30. Hougham G. G. ; Cassidy P. E. ; Johns K. ; Davidson T. , “ Fluoropolymers 2 : Properties. ”, Springer Science & Business Media, 2006, 408.
31. Husk G. R. ; Cassidy P. E. ; Gebert K. L. , “ Synthesis and characterization of a series of polyimides derived from 4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[1,3-isobenzofurandione]. ”, Macromolecule, 21, 1988, 1234-1238.
32. St.Clair A. K. ; St.Clair T. L. , “ Soluble aromatic polyimides for film and coating applications. ”, NASA Technical Memorandum, 89016, 1986.
33. Sasaki S. ; Nishi S. , “ Synthesis of fluorinated polyimides. ”, CRC Press, 1996, 71-120.
34. Chen Y. W. ; Wang W. C. ; Yu W. H. ; Kang E. T. ; Neoh K. G. ; Vora R. H. ; Ong C. K. ; Chen L. F. , “ Ultra-low-k materials based on nanoporous fluorinated polyimide with well-defined poresviathe RAFT-moderated graft polymerization process. ”, J. Mater. Chem., 14, 2004, 1406–1412.
35. Chung C. M. ; Lee J. H. ; Cho S. Y. ; Kim J. G. ; Moon S. Y. , “ Preparation of porous thin films of a partially aliphatic polyimide. ”, J. Appl. Polym. Sci., Vol. 101, 2006, 532–538.
36. Li J. ; Kato J. ; Kudo K. ; Shiraishi S. , “ Synthesis and properties of novel soluble polyimides having an unsymmetric spiro tricyclic dianhydride unit. ”, Macromol.Chem.Phys., 201, 2000, 2289–2297.
37. Ha C. S. ; Mathews A. S. ; Kim I. , “ Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility,transparency, and low dielectric constant. ”, J. Appl. Polym. Sci., Vol. 102, 2006, 3316–3326.
38. Leu C. M. ; Chang Y. T. ; Wei K. H. , “ Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. ”, Macromolecules, 36, 2003, 9122-9127.
39. Lee Y. J. ; Huang J. M. ; Kuo S. W. ; Lu J.S. ; Chang F. C. , “ Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. ”, Polymer, 46, 2005, 173–181.
40. Lee Y. J. ; Huang J. M. ; Kuo S. W. ; Chang F. C. , “ Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles. ”, Polymer, 46, 2005, 10056–10065.
41. Chen Y. W. ; Chen L. ; Nie H. ; Kang E. T. , “ Low-nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. ”, J. Appl. Polym. Sci., Vol. 99, 2006, 2226 –2232.
42. Ye Y. S. ; Chen W. Y. ; Wang Y. Z. , “ Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes. ”, J. Appl. Polym. Sci.: Part A: Polymer Chemistry, Vol. 44, 2006, 5391–5402.
43. Wu S. ; Hayakawa T. ; Kikuchi R. ; Grunzinger S. J. ; Kakimoto M. , “ Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. ”, Macromolecules, 40, 2007, 5698-5705.
44. Wu S. ; Hayakawa T. ; Kakimoto M. ; Oikawa H. , “ Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. ”, Macromolecules, 41, 2008, 3481-3487.
45. Wahab M. A. ; Mya K. Y. ; He C. , “ Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-knanocomposite films. ”, J. Appl. Polym. Sci.: Part A: Polymer Chemistry, Vol. 46, 2008, 5887–5896.
46. Thongyai S. ; Somboonsub B. ; Praserthdam P. , “ Dielectric properties and solubility of multilayer hyperbranched polyimide/polyhedral oligomeric silsesquioxane nanocomposites. ”, J. Appl. Polym. Sci., Vol. 114, 2009, 3292–3302.
47. Devaraju S. ; Vengatesan M. R. ; Selvi M. ; Kumar A. A. ; Alagar M. , “ Synthesis and characterization of bisphenol-A ether diamine-based polyimide POSS nanocomposites for low k dielectric and flame-retardant applications. ”, High Performance Polymers, 24(2), 2012, 85–96.
48. Wang J. Y. ; Yang S. Y. ; Huang Y. L. ; Tien H. W. ; Chin W. K. ; Ma. C. C. M. , “ Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. ”, J. Mater. Chem., 21, 2011, 13569–13575.
49. Liao W. H. ; Yang S. Y. ; Hsiao S. T. ; Wang Y. S. ; Li S. M. ; Ma. C. C. M. ; Tien H. W. ; Zeng S. J. , “ Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ”, ACS Appl. Mater. Interfaces, 6, 2014, 15802−15812.
50. Liu Y. L. ; Fangchiang M. H. , “ Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. ”, J. Mater. Chem., 19, 2009, 3643–3647.
51. Liu Y. L. ; Tseng M. C. , “ Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. ”, Polymer, 51, 2010, 5567-5575.
52. 劉弘晟 , “ 橋式聚倍半矽氧烷/高分子混成材料之合成及其自組裝性質之應用 ”, 中原大學化學工程學系碩士論文, 2009年。
53. 高聖弘 , “ 可攜式裝置可靠性備受考驗,PCB誘電特性量測顯要 ”, 電路板布局技術(下), 2008年。
54. Li J. ; Zhang H. ; Liu F. ; Lai J. ; Qi H. ; You X. , “ A new series offluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor : Synthesis, structureeproperties relationships and dynamic dielectric analyses. ”, Polymer, 54, 2013, 5673-5683.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *