帳號:guest(18.226.163.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱琬婷
作者(外文):Chiu, Wan-ting
論文名稱(中文):綠色材料之液相線投影圖: Cu-In-Se與Sn-Ag-(In)-Zn系統
論文名稱(外文):Liquidus projections of green materials: Cu-In-Se and Sn-Ag-(In)-Zn systems
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-wen
口試委員(中文):陳洋元
朱旭山
口試委員(外文):Chen, Yang-yuan
Chu, Shu-shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032520
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:181
中文關鍵詞:太陽能無鉛銲料液相線投影圖
外文關鍵詞:Solar cellLead-free solderLiquidus projection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:485
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
永續發展是人類最重要的議題之一,對環境友善的材料與能夠再生的能源皆是永續議題中重要之課題。太陽能電池是主要的一種再生能源型式,Cu-In-Se(CIS)與其為基材之合金是太陽能電池中重要的光吸收層(light absorption layer)材料,與太陽能電池的效率息息相關。又太陽能電池中存在著許多電路接點,因此需要銲料合金進行連接。對環境友善的無鉛銲料近年來亦受到很大之關注,Sn-Ag-(In)-Zn合金即是具應用潛力之無鉛銲料。本研究以對環境友善與能源永續發展的太陽能電池為對象,針對其中的Cu-In-Se光吸收層合金與Sn-Ag-(In)-Zn無鉛銲料進行基礎的相圖探討。
相圖是基礎的材料知識,對材料的開發、製程的選擇與產品可靠度評估皆十分重要。然而過去文獻中關於Sn-Ag-Zn、Sn-Ag-In-Zn與Cu-In-Se的相圖資料十分缺乏。因此本研究探討建構Sn-Ag-Zn、Sn-Ag-In-Zn與Cu-In-Se之液相線投影圖(liquidus projection)。液相線投影圖是一種將三維液相曲面投影至平面之相平衡圖,包含了固化首要析出相及含液相之相變化溫度等資料。本研究藉由金相觀察、組成分析以及結構鑑定決定固化首要析出相相區,並以熱分析訂定各個反應點溫度以及固化路徑。本研究依據這些實驗數據以及文獻中相關之二元與三元子系統相圖,建構Sn-Ag-Zn、Sn-Ag-In-Zn與Cu-In-Se系統之液相線投影圖。
在Sn-Ag-Zn三元(ternary)系統的液相線投影圖中,共有八個固化首要析出相(primary solidification phase): ε2-AgZn3、γ-Ag5Zn8、β-AgZn、ζ-Ag4Sn、Ag、ε1-Ag3Sn、β-Sn與Zn相區。在此三元系統中存在著八個三元的不變反應(invariant reaction),其中含有一個class Ⅰ、六個class Ⅱ及一個class Ⅲ反應。在Sn-Ag-In-Zn四元(quaternary)系統,本研究測定了在95.0、90.0與85.0 wt.% Sn的四元液相線投影圖之等值剖面圖(isoplethal section)。在此四元系統中含有九個固化首要析出相: ε1-Ag3Sn、ζ-Ag4Sn、β-AgZn、γ-Ag5Zn8、ε2-AgZn3、Zn、β-Sn、InSn4以及ζ相區。
在Cu-In-Se三元系統的液相線投影圖中,共有十六個固化首要析出相: β1-Cu2Se、Cu、β2-Cu4In、γ-Cu7In3、η-Cu2In、Cu11In9、In、In4Se3、InSe、In6Se7、In2Se3、Se、CuSe2、CuSe、α-CuInSe2以及δ-CuInSe2相區。除端點相與二元相之外,還包括α-CuInSe2以及δ-CuInSe2兩個三元相之相區。在此三元系統中存在著十九個含液相之反應,其中含有四個class Ⅰ、八個class Ⅱ與七個未知型式反應;以及兩個固相間反應同時被測定出。因Se汽化問題,故富Se端的樣品不易製備,部分反應點溫度無法訂定。
Environmental-friendly materials and renewable energies are important topics among the critical sustainability issues. Solar energy is a major kind of renewable energies. Cu-In-Se (CIS) and its-based alloys are prevalent absorption layer materials in the solar cells and are essential to the cells' conversion efficiencies. Furthermore, there are many solder joints in solar cells. In terms of environmental friendliness, lead-free solders should be used. Sn-Ag-(In)-Zn alloys are promising lead-free solders. Understanding of the Cu-In-Se solar cell materials and Sn-Ag-(In)-Zn lead-free solders is important for the developments of environmental-friendly solar cells.
Phase diagrams are basic knowledge of materials. They are important tools for material developments, process selections and evaluations of product reliabilities. However, there are limited literatures of phase diagrams related to the Sn-Ag-Zn, Sn-Ag-In-Zn and Cu-In-Se systems. This study thus determines the liquidus projections of the Sn-Ag-Zn, Sn-Ag-In-Zn and Cu-In-Se systems. Liquidus projection is a projection diagram of the liquidus surfaces of space phase diagrams into a basal plane. It usually contains the information of primary solidification phases, the temperature descending directions of univariant lines and the temperatures of invariant reactions.
Sn-Ag-Zn, Sn-Ag-In-Zn and Cu-In-Se alloys were prepared from pure constituent elements. They were melted, mixed homogeneously together, and then quenched. The as-cast samples were metallographically examined. The primary solidification phases were determined based on the as-cast microstructures, compositional analysis and X-ray diffraction analysis. The temperatures of the invariant reactions were determined by using differential thermal analyzer. The liquidus projections of Sn-Ag-Zn, Sn-Ag-In-Zn and Cu-In-Se systems were constructed based on these experimental results and available phase diagrams of their binary constituent systems.
The liquidus projection of Sn-Ag-Zn and the isoplethal sections of the Sn-Ag-In-Zn liquidus projection are determined. There are eight primary solidification phases in the ternary Sn-Ag-Zn liquidus projection: ε2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, Ag, ε1-Ag3Sn, β-Sn and Zn phase. There are eight invariant reactions in this ternary system, including one class Ⅰ, six class Ⅱ and one class Ⅲ reactions. There are nine primary solidification phases at the 95.0, 90.0 and 85.0 wt.% Sn isoplethal sections of the quaternary Sn-Ag-In-Zn liquidus projection: ε1-Ag3Sn, ζ-Ag4Sn, β-AgZn, γ-Ag5Zn8, ε2-AgZn3, Zn, β-Sn, InSn4 and ζ phases.
There are 16 primary solidification phases in the ternary Cu-In-Se liquidus projection: β1-Cu2Se, Cu, β2-Cu4In, γ-Cu7In3, η-Cu2In, Cu11In9, In, In4Se3, InSe, In6Se7, In2Se3, Se, CuSe2, CuSe, α-CuInSe2 and δ-CuInSe2 phases. There are 19 ternary invariant reactions in this Cu-In-Se liquidus projection which are all involved with liquid phase. These invariant reactions include four class I, eight class Ⅱ and seven unknown types. In addition, there are two invariant reactions at the solid state are also been determined. Experimental difficulties of Se sublimation were encountered at the Se-rich corner, and it was the main reason for these undetermined types of the invariant reactions.
圖目錄 VIII
表目錄 XIII
一、前言 1
1-1.無鉛銲料與太陽能電池 1
1-2.Sn-Ag-(In)-Zn無鉛銲料 4
1-3.Cu-In-Se太陽能電池材料 8
二、文獻回顧 12
2-1.Sn-Ag-In-Zn系統 12
2-1-1.二元Sn-Ag相平衡 12
2-1-2.二元Sn-In相平衡 14
2-1-3.二元Sn-Zn相平衡 16
2-1-4.二元Ag-In相平衡 18
2-1-5.二元Ag-Zn相平衡 20
2-1-6.二元In-Zn相平衡 22
2-2.Cu-In-Se系統 24
2-2-1.二元Cu-In相平衡 24
2-2-2.二元Cu-Se相平衡 26
2-2-3.二元In-Se相平衡 29
2-2-4.三元Cu-In-Se等值剖面圖 31
2-2-4-1.In2Se3-Cu2Se等值剖面圖 31
2-2-4-2.In2Se3-Cu40Se60等值剖面圖 34
2-2-4-3.20 at.% Se等值剖面圖 35
2-2-4-4.40 at.% Se等值剖面圖 36
2-2-4-5.50 at.% Se等值剖面圖 37
2-2-4-6.80 at.% Se等值剖面圖 38
2-2-4-7.10 at.% Cu等值剖面圖 39
2-2-4-8.CuInSe2-Cu70In30等值剖面圖 40
2-2-4-9.CuInSe2-Cu50In50等值剖面圖 41
2-2-4-10.Se-CuInSe2等值剖面圖 42
2-3.三元Sn-Ag-Zn及四元Sn-Ag-In-Zn液相線投影圖 43
2-3-1.三元Sn-Ag-In液相線投影圖 44
2-3-2.三元Sn-In-Zn液相線投影圖 47
2-3-3.三元Sn-Ag-Zn液相線投影圖 50
2-3-4.三元Ag-In-Zn液相線投影圖 51
2-4.三元Cu-In-Se液相線投影圖 52
三、研究方法 54
3-1.三元Sn-Ag-Zn及四元Sn-Ag-In-Zn系統 54
3-1-1.合金配製 54
3-1-2.樣品熱分析 54
3-1-3.樣品金相及結構分析 55
3-2.三元Cu-In-Se系統 56
3-2-1.合金配製 56
3-2-2.樣品熱分析 56
3-2-3.樣品金相及結構分析 56
3-3.單方向凝固 57
3-3-1.合金配製 57
3-3-2.填充合金與單方向凝固 57
3-3-3.樣品分析 57
四、結果與討論 58
4-1.三元Sn-Ag-Zn液相線投影圖 58
4-1-1.ε2-AgZn3相區 62
4-1-2.γ-Ag5Zn8相區 69
4-1-3.β-AgZn相區 73
4-1-4.ζ-Ag4Sn相區 76
4-1-5.Ag相區 79
4-1-6.ε1-Ag3Sn相區 81
4-1-7.β-Sn相區 85
4-1-8.三元Sn-Ag-Zn系統熱分析 88
4-1-9.三元Sn-Ag-Zn液相線投影圖總結 96
4-2.四元Sn-Ag-In-Zn液相線投影圖 100
4-2-1.四元Sn-Ag-In-Zn液相線投影圖富Sn端85.0 wt.% Sn橫截面 103
4-2-2.四元Sn-Ag-In-Zn液相線投影圖富Sn端90.0 wt.% Sn橫截面 108
4-2-3.四元Sn-Ag-In-Zn液相線投影圖富Sn端95.0 wt.% Sn橫截面 108
4-2-4.四元Sn-Ag-In-Zn液相線投影圖總結 109
4-3.三元Cu-In-Se液相線投影圖 111
4-3-1.β1-Cu2Se相區 115
4-3-2.Cu相區 120
4-3-3.β2-Cu4In相區 122
4-3-4.γ-Cu7In3相區 124
4-3-5.η-Cu2In相區 127
4-3-6.Cu11In9相區 135
4-3-7.In4Se3相區 138
4-3-8.InSe相區 141
4-3-9.α-CuInSe2相區 144
4-3-10.δ-CuInSe2相區 153
4-3-11.三元Cu-In-Se系統熱分析 157
4-3-12.三元Cu-In-Se液相線投影圖總結 168
五、結論 173
六、參考文獻 175
[Baren 1992] M. R. Baren, H. Okamoto, C. T. E. White, “Phase Diagrams of Indium Alloys and Their Engineering Applications/ Ag-In (Silver-Indium)”, ASM International, pp.15-19, (1992).
[Boehnke 1987] U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se”, Journal of Material Science, Vol.22, pp.1635-1641, (1987).
[Bolcavage 1993] A. Bolcavage, S. W. Chen, C. R. Kao, and Y. A. Chang, “Phase Equilibria of the Cu-In System Ⅰ: Experimental Investigation.”, Journal of Phase Equilibria, Vol.14 No.1, pp.14-21, (1993).
[British Petroleum 2013] British Petroleum, “BP Statistical Review of World Energy June 2013”, Statistical Review of World Energy, p.15, (2013).
[Brown 1954] J. R. Brown, “The solution of cadmium in zinc”, Journal of the Institute of Metals, Vol.83, pp.49-52, (1954).
[Chakrabarti 1981] D. J. Chakrabarti, and D. E. Laughlin, “The Cu-Se (Copper-Selenium) system”, Bulletin of Alloy Phase Diagrams, Vol.2 No.3, pp.305-315, (1981).
[Chang 1996] C. H. Chang, A. Davydow, B. J. Stanbery and T. J. Anderson, “Thermodynamic assessment of the Cu-In-Se system and application to thin film photovoltaics”, 25th PVSC, May 13-17 Washington, (1996).
[Cui 2001] Y. Cui, X. J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani and K. Ishida, “Thermodynamic calculation of the In-Sn-Zn ternary system”, Journal of Alloys and Compounds, Vol.320 No.2, pp.234-241, (2001).
[David 2004] N. David, K. El Aissaoui, J. M. Fiorani, J. Hertz and M. Vilasi, “Thermodynamic optimization of the In-Pb-Sn system based on new evaluations of the binary borders In-Pb and In-Sn”, Thermochimica Acta, Vol.413 No.1-2, pp.127-137, (2004).
[Dutkiewicz 1984] J. Dutkiewicz and W. Zakulski, “The In-Zn (Indium-Zinc) system”, Bulletin of Alloy Phase Diagrams, Vol.5 No.3, pp.284-289, (1984).
[European Commission 2006] European Commission, “Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)”, Official Journal of the European Union, Vol.L37, pp.19-23, (2006).
[European Commission 2012] European Commission, “Renewable Energy Snapshots 2012”, JRC Scientific and Policy Reports, Vol.16, (2012).
[Gómez-Acebo 1998] T. Gómez-Acebo, “Thermodynamic assessment of the Ag-Zn system”, Calphad, Vol.22 No. 2, pp.203-220, (1998).
[George 1997] S. B. George, R. C. Henry and A. V. John, “Materials handbook: an encyclopedia for managers, technical professionals, purchasing and production managers, technicians and supervisors”, McGraw Hill, (1997).
[Gödecke 2000Ⅰ] T. Gödecke, T. Haalboom and F. Ernst, “Phase equilibria of Cu-In-Se Ⅰ. Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem”, Zeitschrift für Metallkunde, Vol.91 No.8, pp.622-634, (2000).
[Gödecke 2000Ⅱ] T. Gödecke, T. Haalboom and F. Ernst, “Phase equilibria of Cu-In-Se Ⅱ. The In-In2Se3-Cu2Se-Cu subsystem”, Zeitschrift für Metallkunde, Vol.91 No.8, pp.635-650, (2000).
[Gödecke 2000Ⅲ] T. Gödecke, T. Haalboom and F. Ernst, “Phase equilibria of Cu-In-Se Ⅲ. The In2Se3-Se-Cu2Se subsystem”, Zeitschrift für Metallkunde, Vol.91 No.8, pp.651-662, (2000).
[Grabl 2003] H. Grabl, J. Kokott, M. Kulessa, J. Luther, F. Nuscheler, R. Sauerborn H.-J. Schellnhuber, R. Schubert and E.-D. Schulze, “World in Transition Towards Sustainable Energy System”, Germany Advisory Council on Global Change(WBGU), p.3, (2003).
[Halbo 1995] L. Halbo and P. Ohlckers, “Electronics Components, Packaging and Production”, Strandberg and Nilsen Grafisk AS Oslo, (1995).
[Hanson 1934] D. Hanson, E. J. Sandford and H. Stevens, “Properties of tin containing small amounts of silver, iron, nickel or cooper”, Journal of the Institute of Metals, Vol.55, pp.341-357, (1934).
[Hermann 2001] A. M. Hermann, C. Gonzalez, P. A. Ramakrishnan, D. Balzar, N. Popa, P. Rice, C. H. Marshall, J. N. Hilfiker, T. Tiwald, P. J. Sebastian, M. E. Calixto and R. N. Bhattacharya, “Fundamental studies on large area Cu(In, Ga)Se2 films for high efficiency solar cells”, Solar Energy Materials and Solar Cells, Vol.70 No.3, pp.345-361, (2001).
[Heycock 1890] C. T. Heycock and F. H. Neville, “ⅩⅩⅤⅡ.-The molecular weights of metals when in solution”, Journal of the Chemical Society, Transactions, Vol.57 No.0, pp.376-393, (1890).
[Hönle 1989] W. Hönle, G. Kühn and U.-C. Boehnke, “The crystal structure of a quenched Cu-rich β-phase with the composition Cu14.0In16.7Se32”, Journal of Materials science, Vol.24, pp.2483-2487, (1989).
[Jee 2009] Y. K. Jee, J. Yu and K. W. Park, “Zinc and Tin-Zine Via-Filling for the Formation of Through-Silicon Vias in a System-in-Package”, Journal of Electronic Materials, Vol.38 No.5, pp.685-690, (2009).
[Jendrzejczyk 2005] D. Jendrzejczyk and K. Fitzner, “Thermodynamic properties of liquid silver-indium alloys determined form e.m.f. measurements”, Thermochimica Acta, Vol.433 No.1-2, pp.66-71, (2005).
[Karakaya 1987] I. Karakaya and W. T. Thompson, “The Ag-Sn (Silver-Tin) system”, Bulletin of Alloy Phase Diagrams, Vol.8 No.4, pp.340-347, (1987).
[Karl 2009] T. R. Karl, J. M. Melillo and T. C. Peterson, “Global Climate Change Impact in the United States”, Cambridge University Press, p.17, (2009).
[Korhonen 1998] T. M. Korhonen and J. Kivilahti, “Thermodynamics of the Sn-In-Ag solder system”, Journal of Electronic Materials, Vol.27 No.3, pp.149-158, (1998).
[Lee 1954] J. A. Lee, and G. V. Raynor, “The lattice spacings of binary tin-rich alloys”, Proceedings of the Physical Society of London, Vol.67B, pp.737-747, (1954).
[Lin 2003] K. L. Lin and C. L. Shih, “Microstructure and Thermal Behavior of Sn-Zn-Ag Solders”, Journal of Electronic Materials, Vol.32 No.12, pp.1496-1500, (2003)
[Liu 2002] X. J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, J. Pstrus, “Experimental Determination and Thermodynamic Calculation of the Phase Equilibria and Surface Tension in the Sn-Ag-In System”, Journal of Electronic Materials, Vol.31 No.11, pp.1139-1151, (2002).
[Lutz 1988] H. D. Lutz, M. Fischer H. P. Baldus and R. Blachnik, “Zur polymorphie des In2Se3”, Journal of the Less Common Metals, Vol.143 No.1-2, pp.83-92, (1988).
[Magomedov 1979] A. Magomedov, “Electric Resistance of the Cadmium-Zinc and Indium-Zinc Melts”, Teplofizika Vysokikh Temperatur, Vol.17 No.2, pp.323-329, (1979).
[Massalski 1990Ⅰ] T. B. Massalski, H.Okamoto, P. R. Subramanian and K. Linda, “Binary alloy phase diagrams. Vol.3”, ASM International, p.117-118, (1990).
[Massalski 1990Ⅱ] T. B. Massalski, H.Okamoto, P. R. Subramanian and K. Linda, “Binary alloy phase diagrams. Vol.3”, ASM International, pp.2295-2296, (1990).
[Minges 1989] M. L. Minges, “Electronic materials handbook”, ASM International, Vol.1 Packaging, (1989).
[Moser 1985] Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, “The Sn-Zn (Tin-Zinc) system”, Bulletin of Alloy Phase Diagrams, Vol.6 No.4, pp.330-334, (1985).
[Moser 2001] Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X. J. Liu, Y. Inohana and K. Ishida, “Studies of the Ag-In phase diagram and surface tension measurements”, Journal of Electronic Materials, Vol.30 No.9, pp.1120-1128, (2001).
[Murphy 1962] A. J. Murphy, “The constitution of the alloys of silver and tin”, Journal of the Institute of Metals, Vol.35, pp.107-129, (1962).
[Nishimura 1969] G. S. Nishimura, R. S. Fidler, M. R. Taylor and R. W. Smith, “The classification of the indium-zinc eutectic”, Canadian Metallurgical Quarterly, Vol.8 No.4, pp.319-322, (1969).
[Oelsen 1956] W. Oelsen and P. Zuhlke, “Zir thermodynamischenⅤⅢ”, Arch Eisenhuttenewes, Vol.27, pp.743-752, (1956).
[Ohnuma 1999] I. Ohnuma, X. J. Liu, H. Ohtani and K. Ishida, “Thermodynamic database for phase diagrams in micro-soldering alloys”, Journal of Electronic Materials, Vol.28 No.11, pp.1164-1171, (1999).
[Ohtani 2004] H. Ohtani, S. Ono, K. Doi and M. Hasebe, “Thermodynamic Study of Phase Equilibria in the Sn-Ag-Bi-Zn Quaternary System”, Materials Transactions, Vol.45 No.3, pp.614-624, (2004).
[Okamoto 1992] H. Okamoto and C. T. E. White, “Phase Diagrams of Indium Alloys and Their Engineering Applications/ In-Sn (Indium-Tin)”, ASM International, pp.255-257, (1992).
[Okamoto 2004] H. Okamoto, “In-Se (Indium-Selenium)”, Journal of Phase Equilibria and Diffusion, Vol.25 No.2, p.201, (2004).
[Okamoto 2006] H. Okamoto, “In-Sn (Indium-Tin)”, Journal of Phase Equilibria and Diffusion, Vol.27 No.3, p.313, (2006).
[Owen 1939] E. A. Owen and E. W. Roberts, “Factors affecting the limit of solubility of elements in copper and silver”, Philosophical Magazine, Vol.27, pp.294-327, (1939).
[Pfitzner 1996] A. Pfitzner and H. D. Lutz, “Redetermination of the Crystal Structure of γ-In2Se3 by Twin Crystal X-Ray Method”, Journal of Solid State Chemistry, Vol.124 No.2, pp.305-308, (1996).
[Song 2002] C. Song, “Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century”, Catalyst Today, Vol.77, pp.17-49, (2002).
[Subramanian 1989] P. R. Subramanian and D. E. Laughlin, “The Cu-In (Copper-Indium) system”, Bulletin of Alloy Phase Diagrams, Vol.10 No.5, pp.554-568, (1989).
[Svirbely 1953] W. J. Svirbely and S. M. Selis, “A Thermodynamic Study of the Zinc-Indium System”, Journal of the American Chemical Society, Vol.75 No.7, pp.1532-1535, (1953).
[Umanskii 1940] M. M. Umanskii, “Diagram of state of the alloy silver-tin”, Zhurnal Fizicheskoi Khimii, Vol.14, pp.846-849, (1940).
[Vilars 1991] P. Vilars and L. D. Calvert, “Pearson’s Handbook of Crystallographic Data”, ASM, Metal Park, pp.645-646, (1991).
[Wilson 1936] C. L. Wilson and E. A. Peretti, “Zinc-Indium Alloy System”, Industrial and Engineering Chemistry, Vol.28 No.2, pp.204-205, (1936).
[大谷 1999] 大谷 博司, 宮下 正光 and 石田 清仁, “Sn-Ag-Zn 3元系状態図の熱力学的解析”, 日本金属学会誌, Vol.63 No.6, pp.685-694, (1999).
[張汝柏 2012] 張汝柏, “電子軟銲Sn-In-Zn合金液相線投影圖及其與Ag, Cu, Ni之界面反應”, 國立清華大學碩士論文, (2012).
[陳信文 2004] 陳信文, 陳立軒, 林永森 and 陳志銘, “電子構裝技術與材料”, 高立出版社, (2004).
[許哲瑋 2012] 許哲瑋, “電子軟銲Sn-In-Ag合金液相線投影圖及其與Cu, Ni之界面反應”, 國立清華大學碩士論文, (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *