帳號:guest(18.191.210.170)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃筱茹
論文名稱(中文):單乙醇胺水溶液吸收二氧化碳製程之旋轉床與固定床吸收塔體積研究
論文名稱(外文):A Study of Rotating Packed Bed and Packed Bed Absorber Volume by CO2 Capture with Monoethanolamine
指導教授(中文):汪上曉
口試委員(中文):汪上曉
談駿嵩
錢義隆
劉佳霖
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032519
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:39
中文關鍵詞:旋轉床反應器固定床反應器gPROMS氣相流速
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
工業化社會使得經濟快速成長,然而快速發展與高度開發,同時使得我們生活環境陷入加速惡化的困境,近年來,溫室效應問題尤其嚴重,二氧化碳減量已成全球趨勢。化學吸收法為常見的二氧化碳捕集方法,為降低捕集設備成本,具高質傳特性的旋轉床技術被提出,本研究以Kang et al (2014)建立之g-Proms旋轉床與固定床反應器模型分別模擬在不同氣液進量比、不同氣相線性流速以及內徑、外徑、高之幾何條件限制下達90%二氧化碳移除率所需之旋轉床與固定床體積,並進行比較,以期可以降低反應器設備規模。依據模擬結果,旋轉床反應器體積與固定床反應器體積比較之優劣決定於氣相線性流速以及幾何設計之高寬比,此外,吸收劑之負荷亦會影響旋轉床之效率,其不適用於高負荷溶液條件,故目前在最低能耗吸收劑條件下,尚無法以一個旋轉床反應器取代傳統固定床反應器,但是旋轉床反應器之反應效果可以再透過調整氣液流量比、轉速等加以善,未來持續研究新的方法使旋轉床反應器整合至傳統二氧化碳吸收製程中使用
目錄 I
圖目錄 III
表目錄 V
第一章、緒論 1
第二章、文獻回顧 3
二.1 二氧化碳化學吸收基本製程 3
二.1.1標準製程 3
二.1.2 醇胺水溶液吸收反應 3
二.1.3 製程能耗計算 4
二.2超重力旋轉床技術(Higee) 7
二.3旋轉床反應器在二氧化碳捕捉的應用 9
二.4總結 13
第三章、研究方法 14
三. 1 熱力學及動力學模式 14
三.1.1 Electrolyte-NRTL 熱力學理論 14
三.1.2 平衡反應 15
三.1.3動力方程式 15
三.2模型使用 16
三.2.1 gPROMS旋轉床模擬 16
三.2.2固定床模擬 18
三.3模擬實驗設計 18
第四章、模擬結果與討論 22
四.1 旋轉床實驗流速 22
四.2 固定床最大流速 22
四.3 旋轉床最大流速 24
第五章、結論 28
符號說明 29
參考文獻 31
附錄 吸收塔體積模擬數據 33
1.IPCC, IPCC Third Assessment Report 2001. 2001.
2.Strategic analysis of the global status of carbon capture and storage: Report 2: Economic Assessment of Carbon Capture and Storage Technologies; Global CCS Institute, 2009.
3.Kang, J.-L.; Sun, K.; Wong, D. S.-H.; Jang, S.-S.; Tan, C.-S., Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed. International Journal of Greenhouse Gas Control 2014, 25, 141-150.
4.Jassim, M. S.; Rochelle, G. T., Innovative Absorber/Stripper Configurations for CO2 Capture by Aqueous Monoethanolamine. Industrial & Engineering Chemistry Research 2005, 45, 2465-2472.
5.Caplow, M., Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society 1968, 90, 6795-6803.
6.Danckwerts, P. V., The reaction of CO2 with ethanolamines. Chemical Engineering Science 1979, 34, 443-446.
7.Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij, W. P. M., A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chemical Engineering Science 1984, 39, 207-225.
8.Donaldson, T. L.; Nguyen, Y. N., Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes. Industrial & Engineering Chemistry Fundamentals 1980, 19, 260-266.
9.Rinker, E. B.; Sami, S. A.; Sandall, O. C., Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine. Chemical Engineering Science 1995, 50, 755-768.
10.Aroonwilas, A.; Tontiwachwuthikul, P., High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP). Separation and Purification Technology 1997, 12, 67-79.
11.Aroonwilas, A.; Tontiwachwuthikul, P., Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing. Industrial & Engineering Chemistry Research 1998, 37, 569-575.
12.Aboudheir, A.; Tontiwachwuthikul, P.; Chakma, A.; Idem, R., Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science 2003, 58, 5195-5210.
13.Oexmann, J.; Kather, A., Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control 2010, 4, 36-43.
14.Sakwattanapong, R.; Aroonwilas, A.; Veawab, A., Behavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines. Industrial & Engineering Chemistry Research 2005, 44, 4465-4473.
15.Ahn, H.; Luberti, M.; Liu, Z.; Brandani, S., Process configuration studies of the amine capture process for coal-fired power plants. International Journal of Greenhouse Gas Control 2013, 16, 29-40.
16.C, R., Higee Distillation - An Example of Process Intensification. Chem. Engr 1983, 389.
17.Ramshaw C, M. R. H. Mass Transfer Process. US4283255, 1981.
18.顧洋周揚震, 旋轉填充床反應器於臭氧氧化程序之應用. 化工技術 2009, 17, 136-141.
19.Rao, D. P.; Bhowal, A.; Goswami, P. S., Process Intensification in Rotating Packed Beds (HIGEE):  An Appraisal. Industrial & Engineering Chemistry Research 2004, 43, 1150-1162.
20.Yu, C.-H.; Cheng, H.-H.; Tan, C.-S., CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. International Journal of Greenhouse Gas Control 2012, 9, 136-147.
21.Jassim, M. S.; Rochelle, G.; Eimer, D.; Ramshaw, C., Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 2007, 46, 2823-2833.
22.陳崇和, 高濃度醇胺於超重力旋轉床吸收CO2之應用. 國立清華大學碩士論文 2012.
23.Lin, C.-C.; Chen, B.-C., Carbon dioxide absorption in a cross-flow rotating packed bed. Chemical Engineering Research and Design 2011, 89, 1722-1729.
24.Lin, C.-C.; Chen, Y.-W., Performance of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams by chemical absorption. International Journal of Greenhouse Gas Control 2011, 5, 668-675.
25.Austgen, D. M.; Rochelle, G. T.; Peng, X.; Chen, C. C., Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Industrial & Engineering Chemistry Research 1989, 28, 1060-1073.
26.Liu, Y.; Zhang, L.; Watanasiri, S., Representing Vapor−Liquid Equilibrium for an Aqueous MEA−CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model. Industrial & Engineering Chemistry Research 1999, 38, 2080-2090.
27.Hikita, H.; Asai, S.; Ishikawa, H.; Honda, M., The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method. The Chemical Engineering Journal 1977, 13, 7-12.
28.Kvamsdal, H. M.; Jakobsen, J. P.; Hoff, K. A., Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chemical Engineering and Processing: Process Intensification 2009, 48, 135-144.
29.Onda, K., H. Takeuchi, et al., Mass transfer coefficients between gas ad liquid phases in packed columns. Journal of Chemical Engineering of Japan 1968, 1, 56-62.
30.Tung, H.-h., Mah,R.S.H., Modeling liquid mass-tansfer in Higee seperation process. Chem. Engr 1985, 39, 147-153.
31.Lin, C.-C.; Liu, W.-T.; Tan, C.-S., Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 2003, 42, 2381-2386.
32.Lin, C., and B. Chen., Carbon dioxide absorption into NaOH solution in a cross-flow rotating packed bed. OURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-SEOUL 2007.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *