帳號:guest(3.147.51.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳勇毅
作者(外文):Wu, Yung-Yi
論文名稱(中文):以電鍍法製備鈀銀合金薄膜與其儲氫後之應用
論文名稱(外文):Preparation of Palladium-Silver alloy membrane by electroplating and applications after hydrogen storage
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):衛子健
張國興
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032518
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:188
中文關鍵詞:鈀銀合金薄膜電鍍實驗設計法含胺官能基之添加劑氫化鈀電極電化學參考電極應用
外文關鍵詞:Pd-Ag alloy membraneelectroplatingfractional factorial designadditives containing amino-grouppalladium-hydride electrodeelectrochemical reference applications
相關次數:
  • 推薦推薦:0
  • 點閱點閱:294
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
中文摘要
常見的鈀銀合金薄膜製備方式以無電電鍍法為主,再將其進行熱處理形成鈀銀合金而得,製程上具有步驟較為繁瑣、耗時較長、薄膜厚度難以控制…等缺點;另一方面,無電電鍍法所使用的還原劑多為聯氨和次磷酸鹽類,此種還原劑本身具有毒性,無論是對人體或環境均有危害,應盡可能地避免,故本研究希望能夠藉由電鍍的製備方式來取代還原劑之使用。首先,由初步測試發現鈀銀組成會隨著添加劑與電鍍參數的不同而有所改變,為了更有效率地瞭解該電鍍系統之顯著因素,且從文獻中可得知鈀銀合金薄膜組成約為3:1時,較利於氫氣穿透且穩定性較佳,於是利用部分因素實驗設計法控制鈀銀組成。
而根據實驗結果可發現所得鍍層的鈀銀比例均非常接近鍍浴中鈀銀離子的比例,表示該鍍浴已接近平衡電鍍系統。隨後藉由固定鍍浴總濃度並僅改變鈀銀離子濃度比例的方式,可得到鍍層Pd/Ag與鍍浴Pd2+/Ag+之關係圖及其操作方程式。然而,為了更有效地抑制樹枝狀結構的發生,以加入含胺官能基之添加劑,如:Lugalvan G35、Lugalvan IZE、Lugalvan P來做比較,研究發現當Lugalvan G35與Lugalvan P同時存在於鍍浴中即可達到相當平整的表面形態,且亦可將鈀銀比例控制約3:1。在材料分析方面,分別利用能量散射光譜儀(EDX)、場發射電子顯微鏡(FE-SEM)及X光晶格繞射(XRD)測量鈀銀合金組成、表面形態及結晶性變化。
接著則是針對黏著性最佳的鍍層進行電化學行為分析,根據文獻中的理論模型,以電化學方法估算氫於不同鈀銀組成之鍍層中的擴散係數,測得擴散係數的大小為Pd3Ag1>Pd5Ag1>Pd>Pd2Ag1>Pd1Ag1,證實了鈀與銀的比例為3:1之鈀銀合金薄膜較利於作為氫氣穿透薄膜之應用。最終則根據不同組成的鈀銀電極與氫擴散係數的關係,在電化學參考電極的應用上選擇純鈀電極,由常溫常壓鍍浴環境的電位穩定性測試可發現氫化鈀電極的參考電位約為50~85 mV(vs. RHE)且可穩定長達數小時,將氫化鈀電極實際作為電化學參考電極應用時,發現氫化鈀電極無論在常溫、高溫或超臨界流體環境中均可作為電化學參考電極之使用。

關鍵字:鈀銀合金薄膜、電鍍、實驗設計法、含胺官能基之添加劑、氫化鈀電極、電化學參考電極應用
Abstract
The general practice for the synthesis of Pd-Ag alloy membrane consists of the electroless deposition of layers of Pd and Ag alternately, which are then annealed to form Pd–Ag alloy. However, there are some disadvantages in the above manufacturing process, such as complicated steps, time-consuming and difficult to control the membrane thickness. On the other hand, the most common reducing agents used in electroless method are hydrazine (N2H4) and sodium hypophosphite (NaH2PO2), which are very toxic to human body and environment, so it must be avoided to use as much as possible. Hence, the goal of this study is to prepare the alloy by using electroplating method without any toxic reducing agent. Firstly, preliminary results of this study found that the composition of Pd and Ag can be varied with additives and plating parameters. Because most of literatures have reported that Pd-Ag membrane composed of approximately 75 % Pd content, which is suitable for hydrogen permeation and stability. Furthermore, the fractional factorial design (FFD) was carried out in order to efficiently find out the significant factors during the electroplating bath system, which is used to control the composition of Pd-Ag deposition.
In this study, the Pd-Ag ratios in all the deposits are almost equivalent to its proportion in plating solution, which shows the electroplating process of Pd-Ag system is approaching equilibrium codeposition. On the other hand, the operational equation and relation between Pd/Ag ratio in Pd-Ag deposits and Pd2+/Ag+ ratio in plating solutions were obtained by fixing the total concentration of the plating bath and varying the Pd2+/Ag+ concentration ratios. However, in order to reduce the dendritic structures during the deposition process on the surface, the additives containing amino-group, such as Lugalvan G35, Lugalvan IZE and Lugalvan P were added to inhibit the formation of dendrites efficiently. These results show that the relatively smooth surface morphology could be achieved with plating bath containing Lugalvan G35 and Lugalvan P simultaneously. The ratio of Pd/Ag in this deposit was almost equal to 3. The surface morphology, material compositions, and crystalline structure of the as prepared alloy were characterized by using scanning electron microscopic (SEM), energy-dispersive X-ray (EDX) spectroscopic, and X-ray diffraction (XRD) analysis respectively.
For study of hydrogen adsorption/desorption, the Pd-Ag electrodes with best adhesion were chosen and electrochemical analyses were carried out. The hydrogen diffusion coefficient in the deposition with various Pd-Ag compositions can be evaluated according to the theoretical models in the previous reported literatures. The order of diffusion coefficients is listed below: Pd3Ag1>Pd5Ag1>Pd>Pd2Ag1>Pd1Ag1, indicating that the Pd-Ag membrane with Pd/Ag ratio of 3 is more suitable for application of hydrogen permeation membrane. Finally, based on the relation between electrodes with different Pd-Ag compositions and hydrogen diffusion coefficients, the pure Pd electrode was chosen for application of electrochemical reference. From the potential stability test in normal plating bath condition, the stable potential of palladium-hydride is about 50~85 mV(vs. RHE) and last several hours. Furthermore, the palladium-hydride electrodes can be practically used as an electrochemical reference electrode even at high temperature or in supercritical fluid conditions.
Keywords: Pd-Ag alloy membrane, electroplating; fractional factorial design; additives containing amino-group; palladium-hydride electrode; electrochemical reference applications
目錄
中文摘要 I
Abstract III
目錄 VI
圖目錄 XIIII
表目錄 XX
第一章 緒論及理論基礎 1
1-1 電鍍的基本原理 1
1-1-1 前言 1
1-1-2 電鍍的原理 2
1-1-3合金電鍍 12
1-1-4電鍍的前處理 13
1-2 實驗設計法 16
1-2-1 前言 16
1-2-2部分因素實驗設計法 17
1-2-3應答曲面設計 21
1-2-4中心組合設計法 24
1-2-5缺適度的檢驗 25
1-3文獻回顧 28
1-3-1 鈀薄膜與鈀銀合金薄膜之發展簡介 28
1-3-2 無電電鍍法製備鈀薄膜與鈀銀合金薄膜 30
1-3-3 鈀吸脫附氫之文獻探討 35
1-3-4 超臨界二氧化碳流體電鍍系統發展簡介 40
1-3-5 電化學參考電極之應用標準 42
1-4 研究動機與本文大綱 45
第二章 實驗步驟、藥品、實驗儀器 47
2-1 藥品 47
2-2 實驗儀器 48
2-2-1 實驗儀器規格 48
2-2-2 電化學分析儀器 49
2-2-3 材料分析儀器 49
2-3 電極的製備 53
2-3-1 不鏽鋼電極的前處理 53
2-3-2 鈦電極的前處理 53
2-4 電化學實驗 54
2-4-1線性掃描伏安法(Linear Sweep Voltammetry, LSV) 54
2-4-2循環伏安法(Cyclic voltammetry, CV) 54
2-4-3計時電位分析法(Chronopotentiometry, CP) 56
2-4-4安培分析法(Amperometry, i-t curve) 57
2-5 材料分析 58
2-5-1 表面形態分析 58
2-5-2 鍍層組成分析 58
2-5-3 結晶性測試 59
第三章 利用錯合劑與25-1部分因素實驗設計法控制電鍍鈀-銀合金組成之探討 60
3-1 前言 60
3-2實驗設計法之參數設定與參數高低水準(前置作業) 61
3-2-1 線性掃描伏安分析(Linear Sweep Voltammetry, LSV) 61
3-2-1-1 檸檬酸鈉電化學測試 62
3-2-1-2 檸檬酸鈉+EDTA電化學測試 65
3-2-1-2a Pd2++檸檬酸鈉+不同濃度EDTA電化學測試 68
3-2-1-2b Ag++檸檬酸鈉+不同濃度EDTA電化學測試 70
3-2-1-3 檸檬酸鈉+PEG電化學測試 72
3-2-1-4 檸檬酸鈉+EDTA+PEG電化學測試 75
3-2-2 材料分析 77
3-2-2-1 結晶性 77
3-2-2-2鍍層組成及其性質分析 79
3-2-2-3鍍層厚度及電流效率測試 81
3-2-2-4表面形態 83
3-2-3 小結 90
3-3參數高低水準之選擇 92
3-4 25-1部分因素實驗設計法(fractional factorial design) 95
3-5 變異數分析(analysis of variance , ANOVA) 99
3-6 陡升/陡降實驗(Steepest ascent/descent experiment) 107
3-7 鍍層組成之控制 108
3-8 材料分析 110
3-8-1表面形態 110
3-8-2 結晶性 112
3-9 結論 115
第四章 含胺官能基添加劑對鈀-銀合金電鍍之粗糙度控制 116
4-1 前言 116
4-2含胺官能基添加劑之初步測試 118
4-2-1 表面形態分析 118
4-2-2 鍍層組成與性質分析 122
4-2-3 結晶性 125
4-3線性掃描伏安分析(Linear Sweep Voltammetry, LSV) 129
4-3-1 添加劑PEG, PVP和Gelatin之電化學行為探討 129
4-3-2 Lugalvan G35, Lugalvan IZE和Lugalvan P之電化學行為探討 132
4-4結論 135
第五章 不同鈀銀比例電極之儲氫能力與氫離子擴散速率之比較 136
5-1 前言 136
5-2 鈀銀電極於吸附/脫附氫之行為探討 137
5-2-1 不同組成之鈀銀電極於0.5M硫酸中之循環伏安測試 137
5-2-2 不同組成之鈀銀電極於氫吸收量之比較 139
5-2-3 不同組成鈀銀電極之鈀氫化物電位穩定性測試 141
5-3 以電化學方法量測氫離子於不同組成鈀銀電極中之擴散係數 143
5-3-1 定電位法 143
5-3-2 定電流法 148
5-3-3 定電位法與定電流法之比較 151
5-4 結論 152
第六章 氫化鈀電極於參考電極之應用 154
6-1 前言 154
6-2 氫化鈀電極於一般電鍍系統中作為參考電極之測試與應用 155
6-2-1氫化鈀電極於瓦特鎳電鍍液中之電位穩定性測試 156
6-2-2氫化鈀電極於瓦特鎳電鍍液中之參考電極應用 159
6-2-3不同溫度對氫化鈀電極於瓦特鎳電鍍液之影響 162
6-3 氫化鈀電極於超臨界流體電鍍系統中作為參考電極之測試與應用 164
6-3-1氫化鈀電極於超臨界流體電鍍系統中之電位穩定性測試 165
6-3-2氫化鈀電極於超臨界流體電鍍系統中之參考電極應用 168
6-4結論 170
第七章 總結與未來展望 171
7-1 總結 171
7-2 未來展望 176
參考文獻 177
參考文獻
1. 蘇癸陽,“實用電鍍論與實際”(復文書局, 1994), Chap.4.
2. 田福助,“電化學理論與應用”(新科技書局, 1987), Chap.6 and Chap.10.
3. 萬其超,“電化學”(台灣商務, 1978), Chap.1 and Chap.8.
4. A. Brenne, “Electrodeposition of Alloys”, Academic Press, New York, Vol.1-2 (1963).
5. D. Pletcher,“Industrial Electrochemistry ”, Chapman and Hall, London, Chap.1 and Chap.4 (1982).
6. A. Brenner, D.E. Couch and E.K. Williams,“Plating”, 37, 36 (1950).
7. 田福助,“電化學基本原理與應用”(五洲, 2004), Chap.1 and Chap.2.
8. 胡啟章,“電化學原理與方法”(五南圖書, 2002), Chap.2, Chap.3, Chap.5 and Chap.6.
9. A.J. Bard and L.R. Faulkner,“Electrochemical Methods”, John Wiley & Son, Singapore, Chap.1~3 and Chap.9 (1980).
10. G.E.P. Box, W.G. Hunter, J.S. Hunter,“Statistics for Experiments”, Wiely, New York 374~433 (1978).
11. D.C. Montgomery, “Design and Analysis of Experiment, 4th Edition”, John Wiely & Sons, Inc., Singapore (1997).
12. G.E.P. Box, W.G. Hunter, J. Roy, Statist. Soc., B13, 1 (1951).
13. J.A. Cornall,“How to Apply Response Surface Methodology” Vol.8, ASQC, Wisconsin (1990).
14. P. Tsai, C.C. Hu, J. Electrochem. Soc., 149, C492 (2002).
15. R. Agrawal, M. Offutt, M.P. Ramage, Hydrogen economy—an opportunity for chemical engineers? AIChE J. 51 (6) 1582 (2005).
16 M. Levent, D.J. Gun, M.A. El-Bousiffi, Int. J. Hydrogen Energy, 28, 945 (2003).
17. D.C. Cicero, L.A. Jarr, Sep. Sci. Technol. 25, 1455 (1990).
18. R.R. Bhave, Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Reinhold, New York, 1991.
19. R. Bredesen, K. Jordal, O. Bolland, Chem. Eng. Process., 43, 1129 (2004).
20. J. Shu, B.P.A. Grandjean, S. Kaliaguine, Appl. Catal., A 119, 305 (1994).
21. Y. Lin, G. Lee, M. Rei, Catal. Today, 44, 343 (1998).
22. S. Wieland, T. Melin, A. Lamm, Chem. Eng. Sci., 57, 1571 (2002).
23. F. Gallucci, L. Paturzo, A. Fama ̀, and A. Basile, Ind. Eng. Chem. Res., 43, 928 (2004).
24. A. Basile, F. Gallucci, L. Paturzo, Catal. Today, 104, 244 (2005).
25. Y. Shiraski, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi, Int J Hydrogen Energy, 34, 4482 (2009).
26. R. Gryaznov, Sep. Purif. Methods, 29, 171 (2000).
27. A.C. Makrides, J. Phys. Chem., 68, 2160 (1964).
28. E. Kikuchi, S. Uemiya, Gas Sep. Purif., 5, 261 (1991).
29. J. Shu, B.P.A. Grandjean, A. Van Neste, S. Kaliaguine, Can. J. Chem. Eng., 69, 1036 (1991).
30. A.K.M.F. Kibria, Y. Sakamoto, Int. J. Hydrogen Energy, 25, 853 (2000).
31. V. Jayraman, Y.S. Lin, J. Membr. Sci., 104, 251 (1995).
32. J. O’Brien, R. Hughes, J. Hisek, Surf. Coat. Technol., 142–144, 253 (2001).
33. F.C. Gielens, H.D. Tong, C.J.M. van Rijn, M.A.G. Vorstman, J.T.F. Keurentjes, Desalination, 147, 417 (2002).
34. G. Xomeritakis, Y.S. Lin, J. Membr. Sci., 133, 217 (1997).
35. S. Uemiya, T. Matsuda, E. Kikuchi, ibid., 56, 315 (1991).
36. J. Tong, R. Shirai, Y. Kashima, Y. Matsumura, ibid., 260, 84 (2005).
37. R.F. Bunshah, Handbook of Deposition Technologies for Films and Coatings, Noyes Publications, New Jersey, 1994.
38. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, E. Kikuchi, J. Membr. Sci., 56, 303 (1991).
39. J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, ibid., 77, 181 (1993).
40. P.P. Mardilovich, Y. She, Y.H. Ma, M.H. Rei, AIChE J., 44, 310 (1998).
41. S.K. Gade, M.K. Keeling, A.P. Davidson, O. Hatlevik, J.D. Way, Int. J. Hydrogen Energy, 34, 6484 (2009).
42. J. Shu, A. Adnot, B.P.A. Grandjean, S. Kaliaguine, Thin Solid Films, 286, 72 (1996).
43. Y.H. Ma, B.C. Akis, M.E. Ayturk, F. Guazzone, E.E. Engwall, I.P. Mardilovich, Ind. Eng. Chem. Res., 43, 2936 (2004).
44. M.E. Ayturk, I.P. Mardilovich, E.E. Engwall, Y.H. Ma, J. Membr. Sci., 285, 385 (2006).
45. S.E. Nam, K.H. Lee, ibid., 192, 177 (2001).
46. C. Su, T. Jin, K. Kuraoka, Y. Matsumura, T. Yazawa, Ind. Eng. Chem. Res., 44, 3053 (2005).
47. H. Gao, Y. Li, J.Y.S. Lin, B. Zhang, J. Porous Mater., 13, 419 (2006).
48. J. Tong, C. Su, K. Kuraoka, H. Suda, Y. Matsumura, J. Membr. Sci., 269, 101 (2006).
49. I.P. Mardilovich, E. Engwall, Y.H. Ma, Desalination, 144, 85 (2002).
50. J. Tong, H. Suda, K. Haraya, Y. Matsumura, J. Membr. Sci., 260, 10 (2005).
51. Y.H. Chi, P.S. Yen, M.S. Jeng, S.T. Ko, T.C. Lee, Int. J. Hydrogen Energy, 35, 6303 (2010).
52. J.P. Collins, J.D. Way, Ind. Eng. Chem. Res., 32, 3006 (1993).
53. K.L. Yeung, A. Varma, AIChE J., 41, 2131 (1995).
54. K.L. Yeung, R. Aravind, R.J.X. Zawada, J. Szegner, G. Cao, A. Varma, Chem. Eng. Sci., 49, 4823 (1994).
55. F.A. Lowenheim, Modern Electroless Plating, Wiley, New York, 1974.
56. Y.S. Cheng, K.L. Yeung, J. Membr. Sci., 182, 195 (2001).
57. E.W. Schmidt, Hydrazine and Its Derivatives: Preparation, properties and applications, Wiley, New York, 1984.
58. K.L. Yeung, S.C. Christiansen, J. Membr. Sci., 159, 107 (1999).
59. R. Govind, D. Atnoor, Ind. Eng. Chem. Res., 30, 591 (1991).
60. K. Hou, R. Hughes, J. Membr. Sci., 214, 43 (2003).
61. Y.H. Ma, P.P. Mardilovich, Y. She, US patent 6,152, 987 (2000).
62. R. Bhandari, Y. H. Ma, J. Membr. Sci., 334, 50 (2009).
63. D. Pletcher, A First Course in Electrode Process, Chap. 4, The Electrochemical Consultancy, N. Y. (1991).
64. T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc., 55, 1409 (1959).
65. M. W. Breiter, J. Electroanal. Chem., 81, 275 (1977).
66. J.-P. Chevillot, J. Farcy, C. Hinnen and A. Rousseau, ibid., 64, 39 (1975).
67. J. Horkans, ibid., 106, 245 (1980).
68. N. Tateishi, K. Yahikozawa, K. Nishimura, M. Suzuki, Y. Iwanaga, M. Watanabe, E. Enami, Y. Matsuda and Y. Takasu, Electrochim. Acta, 36, 1235 (1991).
69. N. Tateishi, K. Yahikozawa, K. Nishimura and Y.Takasu, ibid., 37, 2427 (1992).
70. R. V. Bucur and F. Bota, ibid., 26, 1653 (1981).
71. Idem., ibid., 27, 521 (1982).
72. Idem., ibid., 28, 1373 (1983).
73. T. Maoka and M. Enyo, ibid., 26, 607 (1981).
74. J. Horkans, J. Electroanal. Chem., 209, 371 (1986).
75. J. McBreen, ibid., 287, 279 (1990).
76. S. Szpak, P. A. Mosier-Boss, S. R. Scharber and J. J. Smith, ibid., 337, 147 (1992).
77. M. Fleischmann, S. Pons and Hawkins, ibid., 261, 301 (1989).
78. M. Fleischmann, S. Pons, M. W. Anderson, L. J. Li and M. Hawkins, ibid., 287, 293 (1990).
79. A. Czerwinski, R. Marassi and S. Zamponi, ibid., 316, 221 (1991).
80. A. Czerwinski, R. Marassi, ibid., 322, 373 (1992).
81. A. M. Riley, J. D. Seader, D. W. Pershing and C. Walling, J. Electrochem. Soc., 139, 1342 (1992).
82. D. R. Rolison and P. P. Trzaskoma, J. Electroanal. Chem., 287, 375 (1990).
83. S. Schuldiner and J. P. Hoare, J. Phys. Chem., 61, 705 (1957).
84. T.-C. Wen and C.-C. Hu, J. Electrochem. Soc., 140, 988 (1993).
85. M. Baldauf and D. M. Kolb, Electrochim. Acta, 38, 2145 (1993).
86. C.-C. Hu and T.-C. Wen, J. Electrochem. Soc., 141, 2996 (1994).
87. S. J. C. Cleghorn and D. Pletcher, Electrochim. Acta, 38, 425 (1993).
88. S. J. C. Cleghorn and D. Pletcher, ibid., 38, 2683 (1993).
89. V. Anantharaman and P. N. Pintauro, Electrochem. Soc. Symposium Series, 92, 255 (1992).
90. V. Anantharaman, Kinetic Study and Flow Reactor Modeling of Electrochemical Hydrogen Evolution and Glucose Reduction on Raney Nickel, Ph.D. Dissertation, Tulane University, New Orleans, LA (1992).
91. J. P. Hoare and S. Schuldiner, J. Electrochem. Soc., 102, 485 (1955).
92. Idem., ibid., 104, 564 (1957).
93. S. Schuldiner and J. P. Hoare, J. Phys. Chem., 62, 504 (1958).
94. 胡啟章, 溫添進,“鎳、鈀、鉑披覆電極之電化學與電催化行為”, 國立成功大學化工所博士論文, 1995, Chap 6 and 7.
95. T. Mallat, E. Polyanszky and J. Petro, J. Catal., 44, 345 (1976).
96. C.-C. Hu and T.-C. Wen, J. Electrochem. Soc., 142, 1376 (1995).
97. C.-C. Hu and T.-C. Wen, Electrochim. Acta, 41, 1505 (1996).
98. A. Czerwinski, I. Kiersztyn, M. Grden, J. Czapla, J. Electroanal. Chem., 471, 190 (1999).
99. P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, PCCP, 4, 3835 (2002).
100. R. Hoyer, L. A. Kibler, D. M. Kolb, Electrochim. Acta, 49, 63 (2003).
101. C. Gabrielli, P. P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc., 151, A1937 (2004).
102. J. Zhang, M. Huang, H. Ma, F. Tian, W. Pan, S. Chen, Electrochem. Commun., 9, 1298 (2007).
103. L. Birry, A. Lasia, Electrochim. Acta, 51, 3356 (2006).
104. H. Duncan, A. Lasia, ibid., 52, 6195 (2007).
105. Idem., ibid., 53, 6845 (2008).
106. C. Lebouin, Y. Soldo Olivier, E. Sibert, P. Millet, M. Maret, R. Faure, J. Electroanal. Chem., 626, 59 (2009).
107. A. Czerwinski, M. Lukaszewski, A. Zurowski, H. Siwek, S. Obrebowski, J. New Mater. Electrochem. Syst., 9, 419 (2006).
108. Y. Takasu, E. Enami, Y. Matsuda, Chem. Lett., 10, 1735 (1986).
109. Y. Gimeno, A. Hernandez Creus, S. Gonzalez, R. C. Salverezza, A. J. Arvia, Chem. Mater., 13, 1857 (2001).
110. A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao, A. E. Russell, PCCP, 5, 3220 (2003).
111. A. Rose, O. South, I. Harvey, S. Diaz-Moreno, J. R. Owen, A. E. Russell, ibid., 7, 366 (2005).
112. P.P. Wells, E.M. Crabb, C.R. King, R. Wiltshire, B. Billsborrow, D. Thompsett, A.E. Russell, ibid., 11, 5573 (2009).
113. S. M. Senthil Kumar, J. Soler Herrero, S. Irusta, K. Scott, J. Electroanal. Chem., 647, 211 (2010).
114. M. Neergat, V. Gunasekar, R. Rahul, ibid., 658, 25 (2011).
115. A. Sarkar, A. Vadivel Murugan, A. Manthiram, J. Phys. Chem., 112, 12037 (2008).
116. R. Pattabiraman, Appl. Catal., A, 153, 9 (1997).
117. O. Paschos, A. N. Simonov, A. N. Bobrovskaya, M. Hantel, M. Rzepka, P. Dotzauer, A. N. Popov, P. A. Simonov, V. N. Parmon, U. Stimming, Electrochem. Commun, 12, 1490 (2010).
118. H. Wang, X. Bo, J. Bai, L. Wang, L. Guo, J. Electroanal. Chem., 662, 291 (2011).
119. G. A. Tsirlina, O. A. Petrii, T. Y. Safonova, I. M. Papisov, S. Y. Vassiliev, A. E. Gabrielov, Electrochim. Acta, 47, 3749 (2002).
120. W. Pan, X. Zhang, H. Ma, J. Zhang, J. Phys. Chem. C, 112, 2456 (2008).
121. M. H. Seo, E. J. Lim, S. M. Choi, S. H. Nam, H. J. Kim, W. B. Kim, Int. J. Hydrogen Energy, 36, 11545 (2011).
122. A. G. Lipson, B. F. Lyakhov, E. I. Saunin, L. N. Solodkova, A. Y. Tsidavze, Diamond Relat. Mater., 18, 984 (2009).
123. M. McHugh, V. Krukonia, Supercritical Fluid Extraction: Principles and Practice, Butterworth Publishers, USA, 1986.
124. A.C. Pierre, G.M. Pajonk, Chem. Rev., 102, 4243 (2002).
125. Y. Liang, C. Zhen, D. Zou, D. Xu, J. Am. Chem. Soc., 126, 16338 (2004).
126. W.L. Tsai, P.C. Hsu, Y. Hwu, C.H. Chen, L.W. Chang, J.H. Je, M.H. Lin, A. Groso, G. Margaritondo, Nature, 417, 139 (2002).
127. H. Yan, M. Sone, N. Sato, S. Ichihara, S. Miyata, Surf. Coat. Technol. 182, 329 (2004).
128. T.F.M. Chang, M. Sone, A. Shibata, C. Ishiyama, Y. Higo, Electrochim. Acta, 55, 6469 (2010).
129. T. Clifforo, Fundamentals of Supercritical Fluids, Oxford University Press, United Kingdom, 1999.
130. S.M. Howdle, V.N. Bagratshvili, Chem. Phys. Lett., 214, 215 (1993).
131. J.A. Darr, M. Poliakoff, Chem. Rev., 99, 495 (1999).
132. J.B. McClain, D.E. Betts, D.A. Canelas, E.T. Samulski, J.M. DeSimone, J.D. Londono, H.D. Cochran, G.D. Wignall, D. Chillura-Martino, R. Triolo, Science, 274, 2049 (1996).
133. N. Shinoda, T. Shimizu, T.-F. Mark Chang, A. Shibata, M. Sone, Thin Solid Films, 529, 29 (2013).
134. S.T. Chung, H.C. Huang, S.J. Pan, W.T. Tsai, P.Y. Lee, C.H. Yang, M.B. Wu, Corros. Sci., 50, 2614 (2008).
135. T.-F. Mark Chang, T. Shimizu, C. Ishiyama, M. Sone, Thin Solid Films, 529, 25 (2013).
136. T.-F. Mark Chang, W.-H. Lin, Y.-J. Hsu, C.-Y. Chen, T. Sato, M. Sone, Electrochem. Commun., 33, 68 (2013).
137. John Newman, Karen E. Thomas-Alyea, “Electrochemical Systems”, Third Edition, John Wiley & Sons, Inc., Chap.5 (2004).
138. Arthur A. Noyes , Don DeVault , Charles D. Coryell ,Thomas J. Deahl, Argentic Salts in Acid Solution, J. Amer. Chem. Soc. I. 57, 1221 (1935); II. 57, 1229 (1935); III. 57, 1238 (1935); IV. 59, 1316 (1937); V. 59, 1326 (1937).
139. T.Ya. Safonova, D.R. Khairullin, G.A. Tsirlina, O.A. Petrii, S.Yu. Vassiliev, Electrochim. Acta, 50, 4752 (2005).
140. H.-Y. Chen, C. Chen, P.-W. Wu, J.-M. Shieh, S.-S. Cheng, K. Hensen, J. Electron. Mater., 37, 224 (2008).
141. W.P. Dow, H.S. Huang, M.Y. Yen, H.C. Huang, J. Electrochem. Soc., 152, C425 (2005).
142. L. Bonou, M. Eyraud, R. Denoyel, Y. Massiani, Electrochim. Acta, 47, 4139 (2002).
143. Y.-D. Tsai, C.-H. Lien, C.-C. Hu, ibid., 56, 7615 (2011).
144. 華彤文, 楊駿英, 陳景祖, 劉淑珍,“普通化學原理”(五南圖書2002), Chap.14.
145. M.G. Fontana,“Corrosion engineering, 3rd edition”, McGraw-Hill Book Company (1987).
146. 夏如鶯, 洪偉章,“化妝品乳化劑之乳化效力之探討”,嘉南藥理科技大學化妝品科技研究所, 2006.
147. M. Fukuda, K. Imayoshi, Y. Matsumoto, Electrochim. Acta, 47, 459 (2001).
148. M.S. Suh, C.J. Park, H.S. Kwon, Surf. Coat. Technol., 200, 3527 (2006).
149. 黎正中,“實驗設計與分析”(高立圖書, 2006), Chap.6.
150. 溫添進, 林世民,“直交表應用於化工實驗分析”化工37卷2期, (1990) 23-33.
151. 溫添進, 林世民,“應答曲面法應用於化工研究”化工38卷5期, (1991) 57-80.
152. 溫添進, 林世民,“實驗設計之直交表配置”化工39卷4期, (1992) 4-17.
153. M. Pourbaix, “Altas of Electrochemical Equilibria in aqueous solution”, National Association of corrosion Engineers, Houston, Texas (1974).
154. A. Brenner, The Electrodeposition of Copper-Bismuth Alloys from a Perchlorate Bath. Ph. D. Thesis, University of Maryland, 1939.
155. E. Raub and B. Wullhorst, Der Aufbau galvanischer Legierungsniederchlage. IV. Die Silber-Kadmium-Legierungen. Metallforsch. 2, 33-41 (1947).
156. R.G. Monk and H. J. T. Ellingham, Electrodeposition of tin alloys from alkaline stannate baths. F. Electrodepositors’ Tech. Soc. 11 (1936) 39-47; see also Trans. Faraday Soc. 31 (1935) 1460.
157. 蔡易達, 胡啟章, 李岱洲, “錯合劑於電鍍錫-鉍無鉛銲料組成控制、黏著性與樹枝狀結構成長之效應”, 國立中正大學化工所碩士論文, 2008, Chap 4.
158. A. Brenner,“Electrodeposition of Alloys, Principles and Practice”, Academic Press, New York, VolumeI (1963).
159. S. Field, The conditions which determine the composition of electrodeposited alloys. Π. Silver-Copper. Thans. Faraday Soc. 6 1-8 (1910).
160. C.G. Fink, C. B. F. Young, Electrochem. Soc., 67, 311 (1935).
161. W. Blum, H. E. Haring, The electrodeposition of lead-tin alloys. Trans. Am. Electrochem. Soc. 40, 287 (1921).
162. 李志甫, 何玲文, 曹君曼,“X-射線法”(高立圖書, 2001).
163. J.-C. Hsieh, C.-C. Hu, T.-C. Lee, Surf. Coat. Technol., 203, 3111 (2009).
164. G. Zheng, B. N. Popov, R. E. White, J. Electrochem. Soc., 142, 2695 (1995).
165. J. Crank, The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford (1975).
166. P. J. Schneider, in Conduction Heat Transfer, p. 246, Addison-Wesley, Cambridge (1955).
167. T.-F. Mark Chang, M. Sone, Surf. Coat. Technol., 205, 3890 (2011).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *