帳號:guest(52.14.128.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昉儀
作者(外文):Lin, Fang-Yi
論文名稱(中文):Morphological Structure of Polymer Hybrids Composed of Metal Salt and Nanoparticles
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):曹正熙
孫亞賢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032514
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:103
中文關鍵詞:高分子複合材料大尺度微相結構排列分散性小角度X光散射鈀奈米粒子鋰鹽類
外文關鍵詞:polymer nanocompositelarge-scale orientationdispersionSAXSPd nanoparticleslithium saltpoly(2-vinylpyridine)poly(ethyl oxide)-block-poly(4-vinylpyridine)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:472
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
高分子和金屬鹽類的混合增強了材料的電性和機械性質,提供在實務應用上的可能性。更進一步來說,摻混在高分子中的金屬鹽類可經由更進一步的原位還原反應,形成金屬奈米粒子並且適當的分佈在高分子基材中。在這篇論文中,我們有系統地討論在鈀鹽參混的高分子材料中,氧化還原的條件,如何影響產生的鈀奈米粒子的最終型態。此外,我們也將揭露參混鋰鹽,對擁有低臨界有序相變行為的嵌段共聚物的微相分離有何影響,並且觀察到鋰鹽誘導的大規模微相結構有序排列現象。
在第一部分研究中,我們將乙酰丙酮鈀 (palladium acetylacetonate)溶於聚-2乙烯吡啶(poly(2-vinylpyridine))中,藉由原位還原反應製備Pd奈米粒子。此反應是乙酰丙酮鈀的熱分解反應,在聚-2乙烯吡啶中通常發生在高於150oC的環境下,是一個放熱反應。藉由小角度X光散射,我們探討了還原溫度,加入的鈀前驅物的濃度,與高分子基材的分子量,對鈀納米粒子在此納米複合材料中的分散型態的影響。在較低的還原溫度下(如150℃),我們發現球形的鈀納米粒子均勻分散在高分子基材中。但在更高的還原溫度下,鈀納米粒子聚集形成群集,進一步凝聚成大規模的碎形結構。一般來說,在較高還原溫度下,Pd納米顆粒的尺寸和局部密度都會變得更大,並且增加高分子基材的分子量傾向於抑制奈米顆粒的尺寸。
在第二部分中,我們選擇了嵌段聚氧乙烯-聚(4-乙烯吡啶)(PEO-b-P4VP)作為模板來承載次氯酸鋰(LiClO4),去研究在熱處理程序裡的PEO-b-P4VP的形態變化。由變溫的紅外光譜可看出,在低鋰鹽濃度下鋰離子選擇性地溶在EO區域中,隨鋰鹽濃度上升鋰離子逐漸與4VP錯合,但它們在較高溫下會從4VP區域解離。通過變溫的小角度X光散射圖譜,我們發現鋰離子可以作為錨去固定EO和4VP界面上的連結點,因此能夠在熱處理過程中,指引大範圍排列的微相結構在塊材中形成。此外,由於鋰離子的摻入導致相分離的驅動力更強,因此能夠降低無序到有序的相轉變溫度發生溫度。
The combination of polymer and metal salt opens manifold possibility in practical uses for enhanced electrical and mechanical properties. Furthermore, through in situ reduction of metal salts in the hybrids, metal nanoparticles (NPs) can be formed and incorporated properly into the polymer matrix. In this thesis, we systematically discussed how the reduction condition of a palladium salt dissolved in a polymer matrix influenced the ultimate morphology of the resultant palladium NPs in the hybrids. In addition, we revealed the impact of lithium salt on the microphase separation behavior of a block copolymer exhibiting lower critical ordering transition (LCOT) behavior and a unique effect in inducing large-scaled microdomain orientation in the block copolymer.
For the first part of the work, we prepared Pd NPs through in situ reduction of palladium acetylacetonate (Pd(acac)2) dissolved in poly(2-vinylpridine) (P2VP). The reduction reaction occurred through thermal decomposition of Pd(acac)2, which was exothermic and usually took place above 150 oC in P2VP matrix. We examined the effects of reduction temperature (Tred), concentration of Pd(acac)2 precursor and molecular weight of P2VP on the dispersion morphology of the Pd NPs in the nanocomposites by small angle X ray scattering (SAXS). At lower Tred (e.g. 150 oC), the nanocomposites were found to compose of spherical Pd NPs which distributed uniformly in the matrix. The Pd NPs underwent aggregation to form local clusters which further agglomerated to construct a large-scale fractal structure at higher Tred. Generally, the size and the local number density of Pd NPs became larger at higher Tred. Increasing P2VP molecular weight tended to reduce the NP size.
In the second part, we chose poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-P4VP) as a template to host lithium perchlorate (LiClO4) to study the morphology of PEO-b-P4VP during thermal annealing process. The hybrids were characterized by temperature-dependent FTIR spectroscopy to show that Li+ ions were selectively solvated in EO domains at low salt concentration. Li+ ions gradually interacted with 4VP with increasing salt content but they dissociated from the binding with 4VP at the higher temperature. Through the use of temperature-dependent SAXS, we found that Li+ ions can serve as anchors to fix the junction points at the interface between EO and 4VP domains and hence induced large-scaled orientation in the bulk during thermal annealing process. Besides, disorder-to-order transition temperature was suppressed due to the stronger segregation power caused by lithium salt.
Chapter 1 Introduction 1
Chapter 2 Investigation of the Dispersion Morphology of Pd NPs Templated by P2VP 4
2-1 Introduction 4
2-1.1 Preparation of metal nanoparticles 4
2-1.2 Metal NPs and the stabilizers 8
2-1.2.1 The importance of fine NPs size and distribution 8
2-1.2.2 Stabilizers 10
2-1.3 Previous studies relating to Pd NPs template by P2VP 13
2-2 Research Motivation 18
2-3 Experimentals 19
2-4 Results and Discussions 22
2-4.1 The morphology of P2VP/Pd(acac)2 mixture before the initiation of reaction 22
2-4.2 Thermal analysis of P2VP/Pd(acac)2 mixture during reduction reaction 26
2-4.3 The morphology of P2VP/Pd NPs nanohybrids characterized by TEM 30
2-4.4 Characterization of P2VP/Pd NPs nanohybrids by X-ray scattering 35
2-5 Conclusion 48
Chapter 3 The Phase Behavior of PEO-b-P4VP/LiClO4 hybrids 49
3-1 Introduction 49
3-1.1 The Phase Behavior and Lower Critical Ordering Transition (LCOT) of Diblock Copolymers 49
3-1.2 Block Copolymer/Metal Salts Hybrids 52
3-1.3 Lithium-doped PEO-based polymers 56
3-1.4 The Large-Scale Orientation in Salt-Induced Block Copolymer Hybrids 60
3-2 Research Motivation 63
3-3 Experimentals 64
3-4 Results and Discussion 68
3-4.1 Temperature-dependent FTIR spectra 68
3-4.2 Thermal Analysis 75
3-4.3 The LCOT behavior of PEO-b-P4VP/LiClO4 hybrid systems 78
3-4.4 The large-scale orientation of lamellar microdomains in PEO-b-P4VP/LiClO4 hybrids 88
3-4.5 The morphology of PEO-b-P4VP/LiClO4 hybrid systems observed by TEM 95
3-5 Conclusion 97
Chapter 4 References 99
1. Turkevich, J.; Kim, G. Science 1970, 169, (3948), 873-879.
2. Fullerton-Shirey, S. K.; Maranas, J. K. Macromolecules 2009, 42, (6), 2142-2156.
3. Maranas, J., Solid Polymer Electrolytes. In Dynamics of Soft Matter, García Sakai, V.; Alba-Simionesco, C.; Chen, S.-H., Eds. Springer US: 2012; pp 123-143.
4. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature 2001, 412, (6846), 520-523.
5. Li, J.; Khan, I. M. Macromolecules 1993, 26, (17), 4544-4550.
6. Li, J.; Mintz, E. A.; Khan, I. M. Chemistry of Materials 1992, 4, (6), 1131-1134.
7. Xiong, H.-M.; Zhao, X.; Chen, J.-S. The Journal of Physical Chemistry B 2001, 105, (42), 10169-10174.
8. Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. R. The Journal of Physical Chemistry B 1998, 102, (44), 8725-8731.
9. Young, W.-S.; Kuan, W.-F.; Epps, T. H. Journal of Polymer Science Part B: Polymer Physics 2014, 52, (1), 1-16.
10. Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A.; Balsara, N. P. Macromolecules 2009, 42, (15), 5642-5651.
11. Kim, S. H.; Misner, M. J.; Yang, L.; Gang, O.; Ocko, B. M.; Russell, T. P. Macromolecules 2006, 39, (24), 8473-8479.
12. Huang, J.; Liu, Y.; Hou, H.; You, T. Biosensors and Bioelectronics 2008, 24, (4), 632-637.
13. Lu, L.-M.; Li, H.-B.; Qu, F.; Zhang, X.-B.; Shen, G.-L.; Yu, R.-Q. Biosensors and Bioelectronics 2011, 26, (8), 3500-3504.
14. Park, S. J.; Kwon, O. S.; Jang, J. Chemical communications 2013, 49, (41), 4673-4675.
15. Xu, T.; Zach, M. P.; Xiao, Z. L.; Rosenmann, D.; Welp, U.; Kwok, W. K.; Crabtree, G. W. Applied Physics Letters 2005, 86, (20), 203104-203104-3.
16. Sekol, R. C.; Li, X.; Cohen, P.; Doubek, G.; Carmo, M.; Taylor, A. D. Applied Catalysis B: Environmental 2013, 138–139, (0), 285-293.
17. Zhao, H.; Yang, J.; Wang, L.; Tian, C.; Jiang, B.; Fu, H. Chemical communications 2011, 47, (7), 2014-2016.
18. Zou, J.; Stewart, S. G.; Raston, C. L.; Iyer, K. S. Chemical communications 2011, 47, (6), 1803-1805.
19. Wang, Z.; Xiao, P.; Shen, B.; He, N. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 276, (1–3), 116-121.
20. Prechtl, M. H. G.; Scholten, J. D.; Dupont, J. Molecules 2010, 15, (5), 3441-3461.
21. Rocaboy, C.; Gladysz, J. A. Organic Letters 2002, 4, (12), 1993-1996.
22. Patton, J. F.; Lavrik, N. V.; Joy, D. C.; Hunter, S. R.; Datskos, P. G.; Smith, D. B.; Sepaniak, M. J. Nanotechnology 2012, 23, (46), 465403.
23. Wook Lee, Y.; Kim, M.; Woo Han, S. Chemical communications 2010, 46, (9), 1535-1537.
24. Toshima, N., Inorganic nanoparticles: synthesis, applications, and perspectives. CRC Press: 2010.
25. Harada, M.; Tamura, N.; Takenaka, M. The Journal of Physical Chemistry C 2011, 115, (29), 14081-14092.
26. Borodko, Y.; Humphrey, S. M.; Tilley, T. D.; Frei, H.; Somorjai, G. A. The Journal of Physical Chemistry C 2007, 111, (17), 6288-6295.
27. Cominos, V.; Gavriilidis, A. The European Physical Journal - Applied Physics 2001, 15, (01), 23-33.
28. Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Journal of the American Chemical Society 2009, 131, (20), 7086-7093.
29. Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Langmuir : the ACS journal of surfaces and colloids 2012, 28, (17), 6736-6741.
30. Hanemann, T.; Szabó, D. V. Materials 2010, 3, (6), 3468-3517.
31. Sidorov, S. N.; Bronstein, L. M.; Davankov, V. A.; Tsyurupa, M. P.; Solodovnikov, S. P.; Valetsky, P. M.; Wilder, E. A.; Spontak, R. J. Chemistry of Materials 1999, 11, (11), 3210-3215.
32. Choi, K. M.; Shea, K. J. Journal of the American Chemical Society 1994, 116, (20), 9052-9060.
33. Haryono, A.; Binder, W. H. Small 2006, 2, (5), 600-611.
34. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T. Langmuir : the ACS journal of surfaces and colloids 1999, 15, (16), 5200-5203.
35. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, (20), 6867-6870.
36. OKUMURA, A.; TSUTSUMI, K.; HASHIMOTO, T. Polymer journal 2000, 32, (6), 520-523.
37. Hashimoto, T.; Okumura, A.; Tanabe, D. Macromolecules 2003, 36, (19), 7324-7330.
38. Sakamoto, N.; Harada, M.; Hashimoto, T. Macromolecules 2005, 39, (3), 1116-1124.
39. Akasaka, S.; Mori, H.; Osaka, T.; Mareau, V. H.; Hasegawa, H. Macromolecules 2009, 42, (4), 1194-1202.
40. Poston, S.; Reisman, A. JEM 1989, 18, (4), 553-560.
41. Janković, B.; Mentus, S. Metall and Mat Trans A 2009, 40, (3), 609-624.
42. L'vov, B. V., Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology. Springer: 2007; Vol. 7.
43. Beaucage, G. Journal of Applied Crystallography 1996, 29, (2), 134-146.
44. Schulz, G. V. Z. Phys. Chem. 1935, 43, 25.
45. Griffith, W. L.; Triolo, R.; Compere, A. L. Physical Review A 1987, 35, (5), 2200-2206.
46. Chan, Y. N. C.; Craig, G. S. W.; Schrock, R. R.; Cohen, R. E. Chemistry of Materials 1992, 4, (4), 885-894.
47. He, H.; Gao, C. Molecules 2010, 15, (7), 4679-4694.
48. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, (2), 32-38.
49. Leibler, L. Macromolecules 1982, 15, (5), 1283-1290.
50. Hamley, I. W., The physics of block copolymers. Oxford University Press New York: 1998; Vol. 329.
51. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, (4), 1091-1098.
52. Ruzette, A.-V.; Leibler, L. Nature materials 2005, 4, (1), 19-31.
53. Pollard, M.; Russell, T. P.; Ruzette, A. V.; Mayes, A. M.; Gallot, Y. Macromolecules 1998, 31, (19), 6493-6498.
54. Yeung, C.; Desai, R. C.; Shi, A.-C.; Noolandi, J. Physical review letters 1994, 72, (12), 1834-1837.
55. Russell, T.; Karis, T.; Gallot, Y.; Mayes, A. 1994.
56. Ryu, D. Y.; Jeong, U.; Kim, J. K.; Russell, T. P. Nature materials 2002, 1, (2), 114-117.
57. Yeh, C.-L.; Hou, T.; Chen, H.-L.; Yeh, L.-Y.; Chiu, F.-C.; Müller, A. J.; Hadjichristidis, N. Macromolecules 2011, 44, (3), 440-443.
58. Förster, S.; Antonietti, M. Advanced materials 1998, 10, (3), 195-217.
59. Lin, T.; Li, C.-L.; Ho, R.-M.; Ho, J.-C. Macromolecules 2010, 43, (7), 3383-3391.
60. Sageshima, Y.; Noro, A.; Matsushita, Y. Journal of Polymer Science Part B: Polymer Physics 2014, 52, (5), 377-386.
61. Xue, F.; Jiang, S. RSC Advances 2013, 3, (46), 23895-23908.
62. Gunkel, I.; Thurn-Albrecht, T. Macromolecules 2011, 45, (1), 283-291.
63. Cho, B.-K.; Jain, A.; Gruner, S. M.; Wiesner, U. Science 2004, 305, (5690), 1598-1601.
64. Naidu, S.; Ahn, H.; Gong, J.; Kim, B.; Ryu, D. Y. Macromolecules 2011, 44, (15), 6085-6093.
65. Ruzette, A.-V. G.; Soo, P. P.; Sadoway, D. R.; Mayes, A. M. Journal of The Electrochemical Society 2001, 148, (6), A537-A543.
66. Nakamura, I.; Balsara, N. P.; Wang, Z.-G. ACS Macro Letters 2013, 2, (6), 478-481.
67. Tarascon, J.-M.; Armand, M. Nature 2001, 414, (6861), 359-367.
68. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochimica Acta 1998, 43, (10–11), 1569-1574.
69. Monroe, C.; Newman, J. Journal of The Electrochemical Society 2005, 152, (2), A396-A404.
70. Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D.; Balsara, N. P. Nano letters 2009, 9, (3), 1212-1216.
71. Teran, A. A.; Mullin, S. A.; Hallinan, D. T.; Balsara, N. P. ACS Macro Letters 2012, 1, (2), 305-309.
72. Sax, J.; Ottino, J. M. Polymer Engineering & Science 1983, 23, (3), 165-176.
73. Li, J.; Kamata, K.; Komura, M.; Yamada, T.; Yoshida, H.; Iyoda, T. Macromolecules 2007, 40, (23), 8125-8128.
74. Young, W.-S.; Epps, T. H. Macromolecules 2012, 45, (11), 4689-4697.
75. Wang, J.-Y.; Chen, W.; Sievert, J. D.; Russell, T. P. Langmuir : the ACS journal of surfaces and colloids 2008, 24, (7), 3545-3550.
76. Wang, J.-Y.; Chen, W.; Roy, C.; Sievert, J. D.; Russell, T. P. Macromolecules 2008, 41, (3), 963-969.
77. Wang, J.-Y.; Xu, T.; Leiston-Belanger, J. M.; Gupta, S.; Russell, T. P. Physical review letters 2006, 96, (12), 128301.
78. Xu, T.; Hawker, C. J.; Russell, T. P. Macromolecules 2003, 36, (16), 6178-6182.
79. Sim, L. H.; Gan, S. N.; Chan, C. H.; Yahya, R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2010, 76, (3–4), 287-292.
80. Di Noto, V.; Longo, D.; Münchow, V. The Journal of Physical Chemistry B 1999, 103, (14), 2636-2646.
81. Li, Z.; Ma, R.; An, Y.; Shi, L. Colloid Polym Sci 2010, 288, (9), 1041-1046.
82. Eichhorn, K.-J.; Fahmi, A.; Adam, G.; Stamm, M. Journal of Molecular Structure 2003, 661–662, (0), 161-170.
83. Vidotto G, L. D., Kovacs A. J Kolloid Z Z Polym 1968, 230.
84. Roe, R.-J.; Roe, R., Methods of X-ray and neutron scattering in polymer science. Oxford University Press New York: 2000; Vol. 739.
85. Hermans, P.; De Booys, J. Kolloid-Zeitschrift 1939, 88, (1), 73-78.
86. Karis, T. E.; Russell, T. P.; Gallot, Y.; Mayes, A. M. Macromolecules 1995, 28, (4), 1129-1134.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *