帳號:guest(18.217.147.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅于珺
作者(外文):Lo, Yu-Chun
論文名稱(中文):氣相法製備一維氟摻雜二氧化錫導電基板奈米結構與其應用
論文名稱(外文):Preparation and Applications of One-Dimensional Fluorine-doped Tin Oxide Nanostructure with Vapor-deposition Processes
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):呂世源
吳紀聖
李岱洲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032509
出版年(民國):103
畢業學年度:102
語文別:中文英文
論文頁數:113
中文關鍵詞:一維氟摻雜二氧化錫氣相沉積法染料敏化太陽能電池感測器
相關次數:
  • 推薦推薦:0
  • 點閱點閱:132
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
一維奈米結構對於電子的傳遞較容易且快速,因而發展許多一維奈米結構材料應用於各種領域。其中,二氧化錫半導體是一種關鍵材料,已被廣泛地用於光電子材料設備和傳感器。SnO2本身導電性差,常藉由還原或摻雜不同原子以提高載子濃度並提升電性質,其中最典型且具有發展潛力的F:SnO2 (FTO) 導電材料已廣泛使用在各種光伏元件。本研究為了縮短電子傳遞的路徑,對FTO導電玻璃進行表面修飾。目的為成長垂直規則之FTO結構於2-D平面上,延伸成3-D結構的導電基材,增加其表面積與粗糙程度,有效提升其相關應用。
本研究第一部分使用相對低溫的熱蒸發氣相沉積法 (VS),成功製備一維SnO2奈米柱與F:SnO2於FTO基板上。討論不同NH4F/SnCl2‧2H2O比例下所合成之FTO結構於染料敏化太陽能電池之效率表現。其中以Ratio=0.5的摻雜條件下,光電轉換效率6.19 % 相較於對照組市售FTO (5.52%)有12%的提升。貢獻來自於一維FTO與光陽極間的良好接觸,兩者間接觸電阻 (Rco)較小,反映出較大的填充因子FF與較小的R1 (3.72 Ω)。由於交錯的FTO錐狀結構,導致入射到元件內部的光線被散射,理論上將有益於光線捕捉。但整體而言,電流密度之表現沒有提升,無法彰顯一維FTO結構的貢獻,此原因需進一步討論。
第二部分則使用氣相沉積法中VLS成長機制。濺鍍金觸媒於FTO基材上,並於管狀高溫爐中通入適量N2與Air,搭配NH4F做為摻雜氟來源,成功以單步驟製備一維FTO奈米線。根據不同沉積長度一維FTO奈米線基材之片電阻值及親水性的表現,顯示此基材對於液態感測器之應用極具發展潛力,如H2O2之感測。對照組市售FTO受限於較差之親水性使其鉑金屬附著量少,影響其感測H2O2靈敏度,與最高靈敏度271.52 mA / M之Au-FTO NWs-3hr基材效果相差約100倍,差異懸殊。貢獻來自於一維FTO奈米線增加鉑金屬之負載,而顯著地提升其靈敏度。本研究提供良好導電性、高表面積與親水性之新型感測器電極材料。
One-dimensional nanostructure is much easily and quickly for electron transfer, therefore many kinds of one dimensional structural materials were developed and used in various fields. Semiconducting SnO2 is a key functional material that has been used extensively for optoelectronic devices and sensors. Because the conductivity of SnO2 is not notable, SnO2 often doped with different atoms in order to improve and enhance the carrier concentration and electrical properties. FTO, fluorine-doped tin oxide, because of its excellent visible light transparency and electric conductivity, has found extensive applications in optoelectronics, display, and photovoltaic devices as a transparent conductive electrode. In this study, we aim to alter the 2-D flat FTO film to fabricate an extended 3-D FTO structure, to increas its surface areas and roughnesses, and effectively shorten the path of electron transfer.
In the first part of this study, we developed a vapor-solid (VS) process, to successfully grow 1-D nanocone FTO on commercial FTO substrates for applications in dye-sensitized solar cells (DSSC) as the anode substrate. Through the investigation of the effect of the NH4F/SnCl2‧2H2O ratio in the anode substrate fabrication, we found that the power conversion efficiency (PCE) of the DSSC changed accordingly. When the doping ratio was 0.5, the PCE was slightly enhanced to 6.19 %. As compared with the PEC obtained by using commercial FTO as the anode substrate (5.52 %), the PCE has increased 12%. The good contact between the TiO¬2 and the present 1-D FTO anode substrate led to smaller contact resistances (Rco). This further resulted in a large fill factor of 0.74 and small R1 of 3.72 Ω.
In the second part, we developed a vapor-liquid-solid (VLS) process, employing gold nanoparticles as the catalyst, to grow FTO nanowires on commercial FTO substrate. These 1-D FTO structure samples were prepared inside a quartz tube, with flowing N2 and air to adjust oxygen concentration for SnO2 nanowire formation and NH4F as the fluorine source for in-situ F-doping. The products showed low sheet resistances and high hydrophilicity, and thus possessed a great potential for applications in H2O2 sensing through Pt-loading. Because of the poor hydrophilicity of the commercial FTO, the amount of Pt loading was limited, which affected its sensing performance. The nanowire length of sample Au-FTO NWs-3hr was about 750 nm, and was good for Pt loading. This sample showed a high sensitivity of 272 mA/M. This study successfully develops a promising and novel sensing electrode, which is conducting, of high surface area, and highly hydrophilic.
總目錄
摘要 I
Abstract II
致謝 IV
圖目錄 VII
表目錄 X
第1章 緒論 1
1-1 一維半導體奈米材料 1
1-1.1 簡介 1
1-1.2 二氧化錫之結構與性質 2
1-1.3 透明導電氧化物(Transparent Conductive Oxide,TCO) 3
1-2 研究動機與方向 4
第2章 文獻回顧與理論說明 6
2-1 一維二氧化錫奈米結構之合成 6
2-2.1 水熱法(hydrothermal method) 6
2-2.2 模板輔助法(template-assisted procedure) 11
2-2.3 氣相沉積法(vapor-deposition procedure) 13
2-2 一維二氧化錫之相關應用 25
2-3.1 染料敏化太陽能電池(Dye-Sensitized Solar Cells) 25
2-3.2 過氧化氫生物感測器(hydrogen peroxide biosensor) 30
2-3 摻雜元素二氧化錫之製備方法與應用 34
2-4.1 鋅摻雜二氧化錫(zinc-doped tin oxide,Zn:SnO2) 35
2-4.2 銻摻雜二氧化錫(antimony-doped tin oxide,Sb:SnO2) 36
2-4.3 氟摻雜二氧化錫(fluorine-doped tin oxide,F:SnO2) 38
第3章 實驗內容 42
3-1 研究架構與方法 42
3-2 實驗藥品 43
3-3 儀器設備 46
3-4 分析儀器 48
3-5 實驗步驟 51
3-5.1 FTO導電玻璃之清洗方法 51
3-5.2 熱蒸發法製備一維二氧化錫奈米陣列及其應用 51
3-5.3 VLS氣相法製備一維二氧化錫奈米陣列及其應用 56
第4章 結果與討論 59
4-1 熱蒸發法製備一維FTO 59
4-1.1 製備一維二氧化錫之研究 59
4-1.2 製備一維摻氟二氧化錫之研究 62
4-1.3 染料敏化太陽能電池量測分析(DSSCs) 74
4-1.4 結論 77
4-2 VLS氣相法製備一維FTO 78
4-2.1 奈米線徑向尺寸(直徑)之改變 78
4-2.2 奈米線軸向尺寸(長度)之改變 80
4-2.3 過氧化氫之電化學感測分析(sensing behavior for H2O2) 93
4-2.4 結論 105
第5章 參考文獻 106
1. 徐壅鎣, "金屬與半導體奈米材料於氣相沉積程序中之控制成長," 國立清華大學 化學工程研究所 碩士論文, (2006).
2. S. Barth, F. H.-Ramirez, J. D. Holmeset, and A. R. Rodriguez , "Synthesis and applications of one-dimensional semiconductors," Progress in Materials Science, 55, 563-627 (2010).
3. Kenry and C.T. Lim, "Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires, " Progress in Materials Science, 58(5), 705-748 (2013).
4. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, "Tin oxide nanowires, nanoribbons, and nanotubes, " Journal of Physical Chemistry B, 106(6), (2002).
5. Y. J. Chen, X. Y. Xue, Y. G. Wang, and T. H. Wang, "Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods, " Applied Physics Letters, 87(23), 233503 (2005).
6. Z.W. Pan, Z.R. Dai, and Z.L. Wang, "Nanobelts of semiconducting oxides, " Science, 291(5510), 1947-1949 (2001).
7. S. Chappel, S.-G. Chen, and A. Zaban, "TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, " Langmuir, 18, 3336-3342 (2002).
8. Q. Wan and T. H. Wang, "Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, " Chemical Communications, 30, 3841-3843 (2005).
9. J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang and L. Liao, "Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, " Journal of Materials Chemistry, 19(13), 1859-1864 (2009).
10. V. Kumar, A. Govind and R. Nagarajan, "Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by a novel single-source precursor approach, " Inorgnic Chemistry, 50(12), 5637-5645 (2011).
11. L. Vayssieres and M. Graetzel, "Highly ordered SnO2 nanorod arrays from controlled aqueous growth, " Angewandte Chemie International Edition, 43(28), 3666-3670 (2004).
12. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park and H. Heinrich, "A rapid hydrothermal synthesis of rutile SnO2 nanowires, " Materials Science and Engineering: B, 157(1-3) 101-104 (2009).
13. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park and H. Heinrich, "Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique, " Physica E: Low-dimensional Systems and Nanostructures, 41(4), 533-536 (2009).
14. Y. Wang, M. Guo, M. Zhang and X.-D. Wang, "Hydrothermal synthesis of SnO2 nanoflower arrays and their optical properties, " Scripta Materialia, 61(3) 234-236 (2009).
15. Y. Wang, M. Guo, M. Zhang and X.-D. Wang, "Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm, 12(12), 4024 (2010).
16. Y. Wang, M. Guo, M. Zhang and X.-D. Wang, "Facile synthesis of SnO2 nanograss array films by hydrothermal method, " Thin Solid Films, 518(18), 5098-5103 (2010).
17. J. Liu, Y. Li, X. Huang and Z. Zhu, "Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor, " Nanoscale Res Lett, 5(7) 1177-1181 (2010).
18. E. Hosono, S. Fujihara, K. Kakiuchi and H. Imai, "Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions, " American Chemical Society, 126(25), 7790-7791 (2004).
19. J. Elias, R. T.-Zaera and C. Le´vy-Cle´ment, "Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays, " Journal of Physical Chemistry C, 112, 5736-5741 (2008).
20. Q. Kuang, T. Xu, Z,-X. Xie, S.-C. Lin, R.-B. Huang and L.-S. Zheng, "Versatile fabrication of aligned SnO2 nanotube arrays by using various ZnO arrays as sacrificial templates, " Journal of Materials Chemistry, 19, 1019-1023.
21. C. ZHENG, J. Wan, Y. Cheng, D. Gu and Y. Zhan, "Preparation of SnO2 nanowires synthesized by vapor-solid mode and its growth mechanism, " International journal of modern physics b, 19(15)2811-2816 (2005).
22. T. Gao and T. Wang, "Vapor phase growth and optical properties of single-crystalline SnO2 nanobelts, " Materials Research Bulletin, 43(4), 836-842 (2008).
23. X. Wang, W. Liu, H. Yang, X. Li, N. Li, R. Shi, H. Zhao and J. Yu, " Low-temperature vapor–solid growth and excellent field emission performance of highly oriented SnO2 nanorod arrays, " Acta Material, 59, 1291-1299 (2011).
24. X. Zhou, W. Fu, H. Yang, Y. Ma, L. Tian, B. Zhao and M. Li, "Facile fabrication of transparent SnO2 nanorod array and their photoelectrochemical properties, " Materials Letters, 93, 95-98 (2013).
25. X. B. Li, X. W. Wang, Q. Shen, J. Zheng, W. H. Liu, H. Zhao, F. Yang and H. Q. Yang, "Controllable low-temperature chemical vapor deposition growth and morphology dependent field emission property of SnO2 nanocone arrays with different morphologies, " ACS Applied Material Interfaces, 5(8), 3033-3041 (2013).
26. R. S. Wagner and W.C. Ellis, "The vapor-liquid-solid mechanism of crystal growth and its application to silicon, " Applied Physics Letters, 233, 1965-1053 (1964).
27. D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Lazzarini, E. Comini and G. Sberveglieri, "Nucleation and growth of SnO2 nanowires, " Journal of Crystal Growth, 275(1-2), e2083-e2087 (2005).
28. Y. D. Ko, J. G. Kang, J. G. Park, S. Lee and D. Y. Kim, "Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries, " Nanotechnology, 20(45), 455701(2009).
29. W. Yin, , B. Wei and C. Hu, "In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition, " Chemical Physics Letters, 471(1-3), 11-16 (2009).
30. R. Müller, F. H. Ramirez, Hao Shen, H. Du, W. Mader and S. Mathur, "Influence of precursor chemistry on morphology and composition of CVD-grown SnO2 nanowires, " Chemistry of Materials, 24(21), 4028-4035 (2012).
31. S. H. Nam and J. H. Boo, "Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method, " Journal of Nanoscience and Nanotechnology, 12(2) 1559-1562 (2012).
32. Y. Zhong, Y. Zhang, R. Li, M. Cai and X. Sun, "Facile synthesis of crystalline SnO2 nanowires on various current collector substrates, " Journal of the Chinese Chemical Society, 59(10), 1288-1293 (2012).
33. B. S. Thabethe, G. F. Malgas, D. E. Motaung, T. Malwela and C. Process, "Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process, " Journal of Nanomaterials, 2013, 1-7. 2013.
34. J. Pan, H. Shen and S. Mathur, "One-dimensional SnO2 nanostructures: synthesis and applications, " Journal of Nanotechnology, 2012, 1-12 (2012).
35. S. Mathew, A. Yella, P. Gao, R. H. Baker and M. Gratzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, " Nature Chemistry, 6(3), 242-247 (2014).
36. E. Ramasamy and J. Lee, "Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells, " Journal of Physical Chemistry C, 114, 22032-22037 (2010).
37. S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, "Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires, " Advanced Functional Materials, 18(16), 2411-2418 (2008).
38. U. V. Desai, C. Xu, J. Wu and D. Gao, "Hybrid TiO2-SnO2 nanotube arrays for dye-sensitized solar cells, " The Journal of Physical Chemistry C, 117, 3232-3239 (2013).
39. G. Shang, J. Wu, S. Tang, L. Liu and X. Zhang, "Enhancement of photovoltaic performance of dye-sensitized solar cells by modifying tin oxide nanorods with titanium oxide layer, " The Journal of Physical Chemistry C, 117(9), 4345-4350 (2013).
40. E. Hurdis and H. Romeyn, "Accuracy of determination of hydrogen peroxide by cerate oxidimetry, " Analytical Chemistry, 26, 320-325 (1954).
41. C. Matsubara, N. Kawamoto and K. Takamura, "Oxo[5,10,15, 0-tetra(4-pyridyl)porphyrinato]titanium(IV) an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 117, 1781-1784 (1992).
42. M. E. Abbas, W. Luo, L. Zhu, J. Zou, H. Tang, "Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system, " Food Chemistry, 120(1), 327-331 (2010).
43. C. Y. Lin, Y. H. Lai, A. Balamurugan, R. Vittal, C. W. Lin and K. C. Ho, " Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide, " Talanta, 82(1), 340-347 (2010).
44. Y. E. Miao, S. He, Y. Zhong, Z. Yang, W. W. TJiu and T, Liu, "A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning, " Electrochimica Acta, 99, 117-123 (2013).
45. Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells, " Advanced Materials, 21(41), 4087-4108 (2009).
46. J. Qian, P. Liu, Y. Ziao, Y. Xiao, Y. Jiang, Y. Cao, X. Ai and H. Yang, "TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells, " Advanced Materials, 21(36), 3663-3667 (2009).
47. X. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, "Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells, " Chemistry of Materials, 23(17), 3938-3945 (2011).
48. J. Liu, T. Luo, S. M. T, F. Meng, B. Sun, M. Li and J. Liu, "A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application, " Chemical Communications, 46(3), 472-474 (2010).
49. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda and V. P. S. Perera, "An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, " Chemical Communications, 15-16 (1999).
50. R. R. Kumar, K. N. Rao, K. Rajanna and A. R. Phani, "Novel co-evaporation approach for the growth of Sb doped SnO2 nanowires, " Materials Letters, 106, 164-167 (2013).
51. V. Consonni , G. Rey , H. Roussel , B. Doisneau, E. Blanquet and D. Bellet, " Preferential orientation of fluorine-doped SnO2 thin films: The effects of growth temperature. Acta Materialia, 61(1), 22-31 (2013).
52. D. W. Sheel , H. M. Yates , P. Evans , U. Dagkaldiran , A. Gordijn , F. Finger , Z. Remes and M. Vanecek, "Atmospheric pressure chemical vapour deposition of F doped SnO2 for optimum performance solar cells, " Thin Solid Films, 517(10), 3061-3065 (2009).
53. P. S. Shewale, K. U. Sim, Y. B. Kim, J. H. Kim, A. V. Moholkar and M. D.Uplane, "Structural and photoluminescence characterization of SnO2: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature, " Journal of Luminescence, 139, 113-118 (2013).
54. J. K. Yang, H. L. Zhao, J. Li, L. P. Zhao, J. J. Chen and B. Yu, "Structural and optical properties and photoluminescence mechanism of fluorine-doped SnO2 films during the annealing process, " Acta Materialia, 62, 156-161 (2014).
55. S. Chappel and A. Zaban, "Nanoporous SnO2 electrodes for dye-sensitized solar cells-improved cell performance by the synthesis of 18 nm SnO2 colloids, " Solar Energy Materials & Solar Cells, 71, 141-152 (2002).
56. C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee, K. Chuan and K. C. Ho, "The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell, " Solar Energy Materials and Solar Cells, 90(15), 2391-2397 (2006).
57. H. Ma, L. Wang, L. Chen, C. Dong, W. Yu, T. Huang and Y. Qian, "Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde, " Catalysis Communications, 8(3), 452-456 (2007).
58. S. Wu, S. Yuan, L. S. Zhao and J. Fang, "Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals, " J Colloid Interface Sci, 346(1), 12-6 (2010).
59. K. T. Lee, and S. Y. Lu, "Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing, " Journal of Materials Chemistry, 22(32), 16259 (2012).
60. A. I. Martínez, L. Huerta, D. Acosta, O. Malik and M. Aguilar, "Physicochemical characteristics of fluorine doped tin oxide films, " Journal of Physics D: Applied Physics, 39(23), 5091-5096 (2006).
61. Z. Yang, S. Gao, T. Li, F. Q. Liu, Y. Ren and T. Xu, "Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells, " ACS Appl Mater Interfaces, 4(8), 4419-4427 (2012).
62. Q. Wang, S. Ito, M. Gratzel, F. F. Santiago, J. Bisquert, T. Bessho and H. Imai, "Characteristics of high efficiency dye-sensitized solar cells, " Journal of Physics B, 110, 25210-25221 (2006).
63. L. Wang and E. Wang, "A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode, " Electrochemistry Communications, 6(2), 225-229 (2004).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *