帳號:guest(18.119.160.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張淳卉
作者(外文):Chang, Chun-Hui
論文名稱(中文):固態YSZ電解質與碳化矽奈米線電極於高溫超級電容器之應用
論文名稱(外文):High Temperature All Solid-state Supercapacitors Based on Silicon Carbide Nanowires Electrode and YSZ Electrolyte
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):黃大仁
Roya Maboudian
口試委員(外文):Huang, Ta-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032504
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:固態超級電容器高溫電容器釔安定氧化鋯碳化矽奈米線
外文關鍵詞:solid-state supercapacitorhigh-temperature supercapacitoryttria-stabilized-zirconia (YSZ)silicon carbide nanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:446
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
超級電容器因其高功率密度、快速充放電、長效性等特性,使它在能源儲存相關應用中佔有重要地位。市面上多數的超級電容器使用液態電解液,使得操作溫度受到限制,無法使用於一些高溫和惡劣的環境中,因此本研究著重於如何發展出一耐高溫且高穩定性的超級電容器。本研究利用YSZ為電解液,碳化矽奈米線為電極材料,組成一對稱式超級電容器。YSZ有極佳的熱穩定性,且在高溫時(T≧300 °C),其離子遷移率會有大幅度的提升,而碳化矽奈米線則具有能提升電容值的高比表面積,且亦在高溫環境下表現出高穩定性,因此這兩者所組成的超級電容器無疑是應用於高溫應用的不二選擇。
本研究利用溶膠凝膠法將YSZ沉積在兩種不同的電極(矽基板與碳化矽奈米線)上,使電極上均勻覆蓋一層YSZ,而所發展出的超級電容器Si/YSZ/Si和SiCNWs/YSZ/SiCNWs均可被用於550 °C的高溫,且在高溫下表現出良好的熱穩定性及電容特性,電容值明顯隨著操作溫度的提升而增加,尤其在溫度大於300 °C時,電容值更是大幅度的提升。Si/YSZ/Si和SiCNWs/YSZ/SiCNWs在以掃速100 mV s-1、電位窗-1至1V下進行循環伏安掃描,可在550 °C的高溫下得到最大電容值,分別為6.9 和240 μF cm-2,由此可見,奈米線的結合可使比電容值增大為單純矽電極的30倍。利用在不同電流密度的充放電測試,經計算可得到其Ragone圖,在高電流密度50 μA cm-2、高溫500 °C下,SiCNWs/YSZ/SiCNWs電容器可產生最大功率密度100 μW cm-2。經過一萬圈、掃速200 mV s-1的循環伏安掃描後,其電容值減少了40%,而CV圖形變得更為方正,顯示此超級電容器有不錯的電化學穩定性。
本研究所製備出之SiCNWs/YSZ/SiCNWs對稱超級電容器,能應用於需要高溫及高穩定性的環境,於450 °C的高溫下,其各項電化學表現仍穩定,是一具有潛力之高溫超級電容器。
Abstract
Supercapacitors play a critical role in energy storage technologies due to its high power density, fast charging/discharging, and long cycle life. Generally, the operating temperatures of current electrochemical energy storage devices are limited because of the use of liquid electrolyte, but some applications need the device to be operated in a harsh environment and at high temperatures. The present thesis develops supercapacitors for such applications. Yttria-stabilized zirconia (YSZ) has excellent thermal stability and its oxygen ion mobility rises drastically at T > 300 °C and silicon carbide nanowires (SiC NWs) have long term stability in high temperature environment and high surface areas, which make them promising candidates for high-T supercapacitor integration.
Here, we develop a symmetric supercapacitor by using YSZ as electrolyte and SiC NWs as electrode, which can be operated at a record high temperature of 550 °C. The fabricated SiC NWs electrodes are successfully coated with completely covered YSZ films via a sol-gel method. In addition, the stacked symmetric supercapacitors Si/YSZ/Si and SiCNWs/YSZ/SiCNWs present excellent thermal stability and good capacitive performances at temperatures above 300 °C. The specific capacitance is distinctly increased with increasing operation temperature, especially at temperatures higher than 300 °C. The maximum specific capacitances obtained for Si/YSZ/Si and SiCNWs/YSZ/SiCNWs are 6.9 and 240 μF cm-2, respectively, at a scan rate of 100 mV s-1 at 550 °C. The specific capacitances at all measurement temperatures increase by 30 times with the integration of NWs. The supercapacitor with SiC NWs electrode is capable of withstanding current density as high as 50 μA cm-2, yielding a highest specific power density of 100 μW cm-2 at 500 °C. A long term stability test over 10,000 CV cycles with a scan rate of 0.2 V s-1 shows excellent stability in capacitance with a specific capacitance retention rate of 60%. Our results indicate that the novel combination of YSZ electrolyte and SiC NWs electrode holds promises for high-T supercapacitor applications.
Contents
Abstract I
摘要 II
Acknowledgement III
Contents IV
Figure Contents VI
Table Contents IX
Chapter 1 Introduction 1
1.1 Fundamentals of Electrochemistry 1
1.1.1 Electrochemical System 1
1.1.2 Factors Affecting Electrochemical System 1
1.1.2.1 Electrode materials 2
1.1.2.2 Electrolyte 3
1.2 Supercapacitors 3
1.2.1 Introduction of supercapacitors 3
1.2.2 Symmetric Capacitors 5
1.2.3 Electric Double Layer Capacitors (EDLC) 5
1.2.4 Pseudocapacitors 7
1.3 Solid state supercapacitors for high temperature applications 7
1.3.1 Silicon Carbide Nanowires (SiC NWs) Electrode 9
1.3.2 Yttrium-Stabilized-Zirconia (YSZ) Electrolyte 9
Chapter 2 Literature Review 11
2.1 Supercapacitors for High Temperature Applications 11
2.2 Silicon Carbide Nanowires as Electrodes for Supercapacitors 21
2.3 Yttria-stabilized-zirconia Thin Film Deposition Techniques and Applications 25
Chapter 3 Experimental Section 31
3.1 Chemicals 31
3.2 Experimental Instruments 34
3.3 Analytical Instruments 35
3.4 Motivation 36
3.5 Methods 38
3.5.1 Clean n-type Si wafer 38
3.5.2 Preparation of SiC NWs 38
3.5.3 Preparation of YSZ Film by Sol-gel Deposition Method 39
3.5.4 Fabrication of a Sandwich Structure Supercapacitor 39
3.5.5 Characteristic Analysis 40
3.5.6 Electrochemical Measurements 40
Chapter 4 Results and Discussions 42
4.1 Characterization of YSZ 42
4.2 Electrochemical Measurements at High Temperatures 46
Chapter 5 Conclusion 62
References 64

References
1. Wei-Chuan Fang, ” Carbon nanotube based nanocomposites for miniaturized supercapacitor applications, ” PhD thesis of National Tsing Hua University Material Science and Engineering Department (2006)
2. Candace Kay Chan, “One-Dimensional Nanostructured Materials For Li-ion Battery and Supercapacitor Electrodes, ” September (2009)
3. http://endomoribu.shinshu-u.ac.jp/research_j/capacitor/index.html
4. Raquel S. Borges, Arava Leela Mohana Reddy, Marco-Tulio F. Rodrigues, Hemtej Gullapalli, Kaushik Balakrishnan, Glaura G. Silva and Pulickel M. Ajayan, “Supercapacitor operating at 200 degrees celsius, ” Scientific Reports, (2013), DOI: 10.1038/srep02572
5. John P. Alper, Albert Gutes, Carlo Carraro and Roya Maboudian, “Semiconductor nanowires directly grown on graphene – towards wafer scale transferable nanowire arrays with improved electrical contact, ” Nanoscale, 5, 4114 (2013)
6. John P. Alper, Mun Sek Kim, Maxime Vincent, Ben Hsia, Velimir Radmilovic, Carlo Carraro, and Roya Maboudian, “Silicon carbide nanowires as highly robust electrodes for microsupercapacitors, ” Journal of Power Sources, 230, 298 (2013)
7. Chih-Wei Kuo, Yueh-Hsun Lee, Kuan-Zong Fung and Moo-Chin Wang, “Effect of Y2O3 addition on the phase transition and growth of YSZ nanocrystallites prepared by a sol–gel process, ” Journal of Non-Crystalline Solids, 351, 304 (2005)
8. G. Laukaitis, J. Dudonis, A.F. Orliukas and D. Milcius, “Properties of YSZ thin films deposited by e-beam technique, ” Solid State Ionics, 179, 182 (2008)
9. Changrong Xia, Shaowu Zha, Weiguang Yang, Ranran Peng, Dingkun Peng and Guangyao Meng, “Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process, ” Solid State Ionics, 133, 287 (2000)
10. Hideki Ogihara, Clive A. Randall, and Susan Trolier-McKinstry, “High-Energy Density Capacitors Utilizing 0.7BaTiO3-0.3BiScO3 Ceramics,” J. Am. Ceram. Soc., 92, 1719 (2009)
11. E. Deloffre, L. Monte`s, G. Ghibaudo, S. Bruye`re, S. Blonkowski, S. Be’cu, M. Gros-Jean and S. Cre’mer, “Electrical properties in low temperature range (5 K-300 K) of Tantalum Oxide dielectric MIM capacitors, ” Microelectronics Reliability, 45, 925 (2005)
12. T.Y. Chang, X. Wang, D.A. Evans, S.L. Robinson and J.P. Zheng, “Tantalum oxide–ruthenium oxide hybrid(R) capacitors, “Journal of Power Sources, 110, 138 (2002)
13. M. Winter and Ralph J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?, ” Chem. Rev., 104, 4245 (2004)
14. John P. Alper, Maxime Vincent, Carlo Carraro, and Roya Maboudian, “Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor, ” Appl. Phys. Lett., 100, 163901 (2012)
15. Bin Ma, Yao Li, Jiupeng Zhao, Xue Li and Wuhong Xin, “Novel structural functional films based on self-assembly template and electrodeposition: Synthesis and characterization of porous Ni/YSZ films, ” Thin Solid Films, 517, 5172 (2009)
16. E. Courtin, P. Boy, T. Piquero, J. Vulliet, N. Poirotc and C. Laberty-Robert, “A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells, ” Journal of Power Sources, 206, 77 (2012)
17. M. G. H. M. Hendriks, M. J. G. W. Heijman, W. E. van Zyl, J. E. ten Elshof, and H. Verweij, “Solid state supercapacitor materials: Layered structures of yttria-stabilized zirconia sandwiched between platinum/ yttria-stabilized zirconia composites, ” J. Appl. Phys., 90, 5303 (2001)
18. Philip H. Rieger, “Electrochemistry, ” Prentice Hall, New Jersey (1987)
19. C.A.C. Sequeira and A. Hooper, “Solid State Batteries, ” Martinus Nijhoff Publishers , Dordrecht (1985)
20. Geoffrey Prentice, “Electrochemical Engineering Principles, ” Prentice Hall, New Jersey (1991)
21. Derek Pletcher and Frank C. Walsh, “Industrail Electrochemistry, ” Chapman and Hall, New York (1990)
22. Benjamin Hsia, “Materials Synthesis and Characterization for Micro-supercapacitor Applications, ” PhD thesis of Chemical and Biomolecular Engineering Department of University of California, Berkeley (2013)
23. J.-P. Zheng, J. Huang and T.-R. Jow, “The limitations of energy density for electrochemical capacitors,” J. Electrochem. Soc., 144, 2026 (1997).
24. http://www.globalspec.com/learnmore/materials_chemicals_adhesives/electrical_optical_specialty_materials/electrical_contact_electrode_materials/electrical_contact_electrode_materials
25. http://matsci4uwi.wordpress.com/2012/11/06/raman-spectroscopy-applications-in-materials-science-part-ii/
26. A. Despotuli and A. Andreeva, “High-capacity capacitors for 0.5 voltage nanoelectronics of the future, ” Modern Electronics, 7, 24 (2007)
27. B. E. Francisco, C. M. Jones, S.-H. Lee and C. R. Stoldt, “Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte,” Applied Physics Letters, 100, (2012)
28. L. Ma and Y. Yang, “Solid-state supercapacitors for electronic device applications,” Appl Phys Lett, 87, (2005)
29. Y. S. Yoon, W. I. Cho, J. H. Lim and D. J. Choi, “Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films,” J. Power Sources, 101, 126 (2001)
30. Hongcai Gao, Fei Xiao, Chi Bun Ching, and Hongwei Duan, “High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2, “ACS Appl. Mater. Interfaces, 4, 2801 (2012)
31. Jinwoo Lee, Jaeyun Kim, Youjin Lee, Songhun Yoon, Seung M. Oh and Taeghwan Hyeon, “Simple Synthesis of Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites, “Chem. Mater., 16, 3323 (2004)
32. Fei Xu, Rongjun Cai, Qingcong Zeng, Chong Zou, Dingcai Wu, Feng Li, Xiaoe Lu, Yeru Liang and Ruowen Fu, “Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors, ” J. Mater. Chem., 21, 1970 (2011)
33. Yiqing Sun, Qiong Wu and Gaoquan Shi, “Supercapacitors based on self-assembled graphene organogel, ” Phys. Chem. Chem. Phys., 13, 17249 (2011)
34. M.Morita, M. Goto and Y. Matsuda, “Ethylene carbonate-based organic electrolytes for electric double layer capacitors, ” J. Appl. Electrochem., 22, 901 (1992)
35. C. Portet, P.L. Taberna, P. Simon and E. Flahaut, “Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, ” Journal of Power Sources, 139, 371 (2005)
36. Kazushi Shimamoto, Kiyoharu Tadanaga and Masahiro Tatsumisago, “All-solid-state electrochemical capacitors using MnO2/carbon nanotube composite electrode, ” Electrochimica Acta, 109, 651 (2013)
37. Ben Hsia, Julian Marschewski, Shuang Wang, Jung Bin In, Carlo Carraro, Dimos Poulikakos, Costas P Grigoropoulos and Roya Maboudian, “Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes, ” Nanotechnology, 25, 055401 (2014)
38. Ariel I. Horowitz and Matthew J. Panzer, “High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications, ” J. Mater. Chem., 22, 16534 (2012)
39. Rodrigo L. Lavall, Raquel S. Borges, H´allen D.R. Calado, Cezar Welter, Jo˜ao P.C. Trigueiro, Jacques Rieumont, Bernardo R.A. Neves and Glaura G. Silva, “Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites, ” Journal of Power Sources, 177, 652 (2008)
40. Minoru Inaba, Atsushi Mineshige, Tomoyuki Maeda, Shinji Nakanishi, Tsutomu Ioroi, Tadayoshi Takahashi, Akimasa Tasaka, Kenji Kikuchi and Zempachi Ogumi, “Growth rate of yttria-stabilized zirconia thin films formed by electrochemical vapour-deposition using NiO as an oxygen source II. Effect of the porosity of NiO substrate, ” Solid State Ionics, 104, 303 (1997)
41. I. Zhitomirsky and A. Petric, “Electrolytic deposition of ZrO2 –Y2O3 films, ” Materials Letters, 50, 189 (2001)
42. Joonho Kim, Youngsun Park, Dae Jin Sung, Sangjin Moon, Ki Bong Lee and Suk-In Hong, “Preparation of thin film YSZ electrolyte by using electrostatic spray deposition, ” Int. Journal of Refractory Metals & Hard Materials, 27, 985 (2009)
43. Charan Masarapu, Hai Feng Zeng, Kai Hsuan Hung, and Bingqing Wei, “Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors, ” American Chemical Society Nano, 3, 2199 (2009)
44. P. Bouvier and G. Lucazeau, “Raman spectra and vibrational analysis of nanometric tetragonal zirconia under high pressure, ” Journal of Physics and Chemistry of Solids, 61, 569 (2000)
45. E. Courtin, P. Boy, T. Piquero, J. Vulliet, N. Poirot and C. Laberty-Robert, ” A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells, ” Journal of Power Sources, 206, 77 (2012)
46. Sebastian Heiroth, Ruggero Frison, Jennifer L.M. Rupp, Thomas Lippert, Eszter J. Barthazy Meier, Elisabeth Müller Gubler, Max Döbeli, Kazimierz Conder, Alexander Wokaun and Ludwig J. Gauckler, “Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition, ” Solid State Ionics, 191, 12 (2011)
47. M. Sakib Khan, M. Saiful Islam and David R. Bates, “Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study, ” J. Mater. Chem., 8, 2299 (1998)
48. Brian Good, Materials and Structures Division, NASA GRC, Cleveland and Ohio, “Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized-Zirconia”
49. Zubin Huang, James Caputo and Chieng-Chieh Chao, “Oxygen Ion Diffusion in Yttria-Stabilized Zirconia, ” (2007)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *