帳號:guest(3.145.57.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇致豪
作者(外文):Su, Chih-Hao
論文名稱(中文):微波輔助水熱法合成高熱穩定性銳鈦礦相二氧化鈦於光催化之研究
論文名稱(外文):Photocatalysis of Highly Thermal Stable Anatase Phase Titanium Dioxide Synthesized by Microwave Assisted Hydrothermal Method
指導教授(中文):胡啟章
口試委員(中文):衛子健
張國興
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032501
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:160
中文關鍵詞:二氧化鈦微波輔助水熱法熱穩定性光催化
外文關鍵詞:TiO2Microwave-assisted hydrothermal methodThermal stabilityPhotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:233
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以微波輔助水熱法(microwave-assisted hydrothermal method, MAH)製備高熱穩定性銳鈦礦相(anatase)二氧化鈦。材料製備方面,首先以四價鈦離子之硫酸水溶液為前驅物,接著利用微波輔助水熱法將溶液加熱至200℃並持溫20分鐘。經清洗烘乾後以不同溫度在空氣中鍛燒2小時,最後研磨成粉,得二氧化鈦奈米粒子。
材料分析與鑑定方面,以X光繞射儀(XRD)觀察二氧化鈦之晶相與晶粒大小;漫反射光譜(DRS)、光致螢光譜(PL)分析二氧化鈦之能帶結構與電子電洞對之再結合行為;掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)觀察觸媒之表面型態與粒子聚集情況;氮氣吸脫附曲線測定其比表面積、孔徑分布與孔洞型態。此外,在電化學行為的表現上,透過線性掃描伏安法(LSV)分析二氧化鈦之光電流大小;強度調制光電流頻譜(IMPS)量測光激發電子的傳遞時間;強度調制光電壓頻譜(IMVS)研究光激發電子的生命週期。
光催化活性探討則以亞甲基藍溶液為汙染物,模擬太陽光為光源,分析不同鍛燒溫度下所製備之觸媒的脫色效果。評估觸媒效能時,除了直接以二氧化鈦懸浮液在亞甲基藍溶液中進行光催化反應外,亦將二氧化鈦塗佈在電極上進行研究。根據實驗結果,以簡易、省時、省能的微波輔助水熱法及適當的實驗條件能合成純銳鈦礦相二氧化鈦。且隨著鍛燒溫度的增加,二氧化鈦的催化效果也有顯著提升。在800℃鍛燒下所得樣品(TiO2-800OC)於懸浮液中之脫色速率甚至優於商用材Degussa P25。另一方面,在二氧化鈦光陽極的降解系統中,雖然TiO2-800OC在塗佈時損失了一些有效表面積,但催化效果仍與Degussa P25相差無幾。其較高的觸媒活性可歸因於良好的結晶性、較低的電子電洞再結合量與較大的光激發電流。
關鍵字:二氧化鈦、微波輔助水熱法、熱穩定性、光催化
In this research, highly thermal stable and phase-pure anatase titanium dioxide was synthesized by a microwave-assisted hydrothermal method (MAH method). Titanium ion (IV) in aqueous sulfuric acid solution was used as precursor for sample preparation. After sufficient ultrasonic treatment and stirring, the solution was heated to 200OC for 20 minutes by a microwave reactor. The as-prepared sample was washed by D.I. water for several times to remove residual impurities and then calcined at various temperatures in the air for 2 hours. Finally, the sample was ground to powder and white titanium dioxide nanoparticles (TiO2-NPS) were obtained.
The material analysis such as structures, phases, crystalline sizes, band gaps, band structures, electron-hole recombinations, morphologies, and pore structures were characterized by means of X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), scanning electron microscopy (SEM), transmission electron microscope (TEM), and N2 adsorption- desorption analysis. Moreover, the photoelectrochemical behavior such as photocurrent density, electron transport time and electron lifetime were studied via linear sweep
IV
voltammetry (LSV), intensity modulated photocurrent spectroscopy (IMPS), and intensity modulated photovoltage spectroscopy (IMVS).
In order to investigate the photocatalytic activity of the as-prepared and calcined TiO2-NPS at various temperatures. The samples were suspended directly and also by coating on the graphite electrode under methylene blue which was used as pollutant. The photodegradation system was operated under simulated sun light. The result shows that phase-pure anatase titanium dioxide can be synthesized by a simple, time and energy saving MAH method. Besides, the photocatalytic activity was enhanced with an increase of calcined temperature. The sample calcined at 800OC exhibits faster degradation rate compared with commercially available Degussa P25 when the suspension was applied. On the other hand, the sample coated on the graphite electrode lost some effective surface area, but still possesses comparable photocatalytic activity with Degussa P25. The higher photocatalytic activity was obtained due to the better crystallinity, lower recombination of electron-hole pair and larger photocurrent density.
Keywords: TiO2; Microwave-assisted hydrothermal method; Thermal stability; Photocatalysis
目 錄
摘 要 I
Abstract III
圖目錄 VIII
表目錄 XIII
第一章 緒論與文獻回顧 1
1-1 緒論 1
1-1.1 文獻回顧與研究動機 2
1-1.2 研究架構 9
1-2 觸媒與半導體基本原理 10
1-2.1 觸媒的基本原理 10
1-2.2 半導體的基本原理 12
1-2.3 光觸媒催化原理 14
1-3 奈米二氧化鈦光觸媒 15
1-3.1 奈米二氧化鈦的物理性質 15
1-3.2 奈米二氧化鈦的製備方式 18
1-3.3 奈米二氧化鈦的光化學催化反應 20
1-4 高級氧化技術 26
1-4.1 芬頓法 28
1-4.2 光芬頓氧化法 29
1-4.3 光化學氧化法 29
1-4.4 電芬頓氧化法 30
1-4.5 電化學氧化法 31
1-4.6 光電芬頓氧化法 31
1-4.7 光電化學氧化法 32
1-5 微波系統 33
第二章 實驗方法與儀器簡介 38
2-1 儀器與藥品 38
2-1.1 儀器 38
2-1.2 藥品 40
2-2 微波實驗流程 42
2-3 光降解有機污染物 45
2-4 電極製備 48
2-4.1 石墨電極製備 48
2-4.2 FTO電極製備 49
2-5 材料分析儀器與原理簡介 51
2-5.1 X光繞射分析(X-ray diffraction analysis, XRD) 51
2-5.2 漫反射光譜(Diffuse Reflectance Spectroscopy, DRS) 54
2-5.3 光致螢光譜 (Photoluminescence, PL) 55
2-5.4 紫外光-可見光吸收光譜(UV-Vis Spectroscopy) 56
2-5.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 57
2-5.6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 58
2-5.7 氮氣吸脫附曲線(Nitrogen Adsorption-Desorption Curve) 59
2-5.8 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 63
2-4.9 強度調制光電流頻譜與強度調制光電壓頻譜(Intensity Modulated Photocurrent Spectroscopy and Intensity Modulated Photovoltage Spectroscopy, IMPS & IMVS) 65
第三章 微波輔助水熱法合成二氧化鈦之材料分析 76
3-1 前言 76
3-2 實驗方法與流程 76
3-3 二氧化鈦之材料分析 78
3-3.1 X光繞射之分析 78
3-3.2 漫反射光譜儀之能隙大小分析 84
3-3.3 光致螢光光譜之能帶結構分析 89
3-3.4 掃描式電子顯微鏡之表面形貌分析 92
3-3.5 穿透式電子顯微鏡之表面微結構分析 95
3-3.6 氮氣吸脫附曲線之表面積與孔洞分析 101
3-4 二氧化鈦之電化學行為分析 107
3-4.1 線性掃描伏安法之光電流應答分析 108
3-4.2 強度調制光電流頻譜與強度調製光電壓頻譜之電子傳遞性質與表面缺陷分析 111
3-5 結論 117
第四章 微波輔助水熱法合成二氧化鈦之光催化分析 118
4-1 前言 118
4-2 實驗方法與流程 118
4-3 以二氧化鈦懸浮液降解亞甲基藍 121
4-4 探討鍛燒溫度對二氧化鈦光催化活性的影響 126
4-5 總有機含碳量分析 129
4-6 以二氧化鈦陽極降解亞甲基藍 130
4-6.1 以光輔助系統降解亞甲基藍 131
4-6.2 以電輔助系統降解亞甲基藍 134
4-6.3 以光電輔助系統降解亞甲基藍 138
4-6.4 以光電芬頓輔助系統降解亞甲基藍 140
4-7 探討pH值對界達電位及染料吸附之影響 141
4-8 探討TiO2-800OC與Degussa P25之性質差異 143
4-9 結論 145
第五章 總結與未來展望 149
5-1 總結 149
5-2 未來展望 151
參考資料 152

參考文獻
[1] J. Chen, M. Liu, J. Zhang, X. Ying, L. Jin, Journal of Environmental Management 70 (2004) 43-47.
[2] S. Chen, Y. Liu, Chemosphere 67 (2007) 1010-1017.
[3] W. Liu, S. Chen, W. Zhao, S. Zhang, Desalination 249 (2009) 1288-1293.
[4] A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
[5] M. Fujihira, Y. Satoh, T. Osa, Nature 293 (1981) 206-208.
[6] S.N. Frank, A.J. Bard, Journal of the American Chemical Society 99 (1976) 303-304.
[7] A. Kudo, Catalysis Surveys from Asia 7 (2003) 31-38.
[8] R. Fretwell, P. Douglas, Photochemical & Photobiological Sciences 1 (2002) 793-798.
[9] A. Fujishima, D.A. Tryk, Springer 2 (1999) 196-224.
[10] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637-638.
[11] A.L. Pruden, D.F. Ollis, Journal of Catalysis 82 (1983) 404-417.
[12] R. Wang, K. Hashimoto, A. Fujishima, Nature 388 (1997) 431-432.
[13] M. Lim, Y. Zhou, B. Wood, L.Z. Wang, V. Rudolph, G.Q. Lu, Environmental Science & Technology 43 (2009) 538–543.
[14] W. Li, Y. Bai, C. Liu, Z. Yang, X. Feng, X. Lu, N.K.V.D. Laak, K.-Y. Chan, Environmental Science & Technology 43 (2009) 5423–5428.
[15] K. Lv, Q. Xiang, J. Yu, Applied Catalysis B: Environmental 104 (2011) 275-281.
[16] P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, Journal of
153
Physical Chemistry C 113 (2009) 3246–3253.
[17] Y. Lv, L. Yu, H. Huang, H. Liu, Y. Feng, Applied Surface Science 255 (2009) 9548-9552.
[18] W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah, Journal of Applied Physics 96 (2004) 6663.
[19] C. Perego, R. Revel, O. Durupthy, S. Cassaignon, J.-P. Jolivet, Solid State Sciences 12 (2010) 989-995.
[20] K. Lv, J. Yu, L. Cui, S. Chen, M. Li, Journal of Alloys and Compounds 509 (2011) 4557-4562.
[21] Q. Xiang, J. Yu, M. Jaroniec, Journal of the American Chemical Society 134 (2012) 6575-6578.
[22] F. Chen, Z. Liu, Y. Liu, P. Fang, Y. Dai, Chemical Engineering Journal 221 (2013) 283-291.
[23] M. Toyoda, Applied Catalysis B: Environmental 49 (2004) 227-232.
[24] S. Liu, N. Jaffrezic, C. Guillard, Applied Surface Science 255 (2008) 2704-2709.
[25] Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Journal of Physical Chemistry B 102 (1998) 10871-10878.
[26] S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chem. Mater. 15 (2003) 3326-3331.
[27] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tedrahedron Letters 27 (1986) 279-282.
[28] S. Komarnenia, R.K. Rajhaa, H. Katsukib, Materials Chemistry and Physics 61 (1999) 50-54.
[29] G. Ma, X. Zhao, J. Zhu, International Journal of Modern Physics B
154
19 (2005) 2763-2768.
[30] T. Suprabha, H.G. Roy, J. Thomas, K. Praveen Kumar, S. Mathew, Nanoscale research letters 4 (2008) 144-152.
[31] S. Sitthisang, S. Komarneni, J. Tantirungrotechai, Y.D. Noh, H. Li, S. Yin, T. Sato, H. Katsuki, Ceramics International 38 (2012) 6099-6105.
[32] J.R.H. Ross, Heterogeneous Catalysis (2012) 48.
[33] O. Deutschmann, H. Knözinger, K. Kochloefl, T. Turek, Heterogeneous Catalysis and Solid Catalysts, 1. Fundamentals (2011) 2.
[34] 李定粵, 「觸媒的原理與應用」, 正中出版社, 台北, 1991.
[35] A. Hagfeldt, M. Gratzel, Chemical Reviews 95 (1995) 49-68.
[36] B.G. Streetman, S. Banerjee, Solid State Electronic Devices, 4 ed., Tom Robbins, USA, 2000.
[37] M. Grätzel, Nature 414 (2001) 338-344.
[38] 蕭宏, 「半導體製程技術概論」, 台灣培生教育, 台北, 2002.
[39] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Chemical Reviews 95 (1995) 69-96.
[40] 林素妃, 微波水熱合成二氧化鈦於光催化與光電化學之應用, 化學工程學系, 國立清華大學, 台灣, 2010.
[41] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis, Fundamentals and Applications BKC, Tokyo, 1999.
[42] U. Diebold, Surface Science Reports 48 (2003) 53-229.
[43] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Viscald, Journal of the American Chemical Society 104 (1982) 2996-3002.
[44] H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Research on
155
Chemical Intermediates 20 (1994) 815-823.
[45] A.L. Linsebigler, G. Lu, J. John T. Yates, Chemical Reviews 95 (1995) 735-758.
[46] 高濂, 鄭珊, 張青紅, 「奈米光觸媒」, 五南圖書, 台北, 2004.
[47] A. Fujishima, T.N. Rao, D.A. Tryk, Journal of Photochemistry and Photobiology C (2000) 1-21.
[48] M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, Fla., 1989.
[49] M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water research 44 (2010) 2997-3027.
[50] T. Katagi, Reviews of Environmental Contamination and Toxicology 182 (2004) 1-195.
[51] M. Schiavello, Heterogeneous Photocatalysis, Wily, USA, 1997.
[52] W.H. Glaze, J.-W. Kang, D.H. Chapin, Ozone: Science & Engineering 9 (1987) 335-352.
[53] R. MUNTER, Proceedings of the Estonian Academy of Sciences 50 (2001) 59-80.
[54] J.H. Carey, Water Pollution Research Journal of Canada 27 (1992) 1-21.
[55] H.J.H. Fenton, Journal of the Chemical Society, Transactions 65 (1894) 899-910.
[56] C.P. Huang, C. Dong, Z. Tang, Waste Management 13 (1993) 361-377.
[57] M. Kitis, C.D. Adams, G.T. Daigger, Water research 33 (1999) 2561-2568.
156
[58] C.A. Martínez-Huitle, E. Brillas, Applied Catalysis B: Environmental 87 (2009) 105-145.
[59] J.J. Plgnatello, Environmental Science & Technology 26 (1992) 944-951.
[60] J. Sima, J. Makanova, Coordination Chemistry Reviews 160 (1997) 161-189.
[61]A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, Solar Energy 56 (1996) 439-443.
[62] E. Brillas, P.L. Cabot, J. Casado, Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications, Marcel Dekker, New York, 2003.
[63] Y. Sun, J.J. Plgnatello, Environmental Science & Technology 27 (1993) 304-310.
[64] J.M. Peralta-Hernandez, Y. Meas-Vong, F.J. odrıguez, T. . Chapman, M.I. Maldonado, L.A. Godınez, ater research 4 (2 6) 1754-1762.
[65] Y.B. Xie, X.Z. Li, Materials Chemistry and Physics 95 (2006) 39-50.
[66] B.L. Hayes, Microwave Synthesis, CEM, 2002.
[67] C. Yin, Bioresource technology 120 (2012) 273-284.
[68] 科安企業股份有限公司, 「聚焦微波化學反應系統」, 2006.
[69] A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J.-P. Jolivet, Journal of Materials Chemistry 11 (2001) 1116-1121.
[70] MARS Xpress, CEM, http://www.hellopro.fr/mineralisateur-mars-xpress-2001846-388224-produit.html.
157
[71] A. Mills, J. Wang, Journal of Photochemistry and Photobiology A 127 (1999) 123-134.
[72] Y. Yang, Q. Wu, Y. Guo, C. Hu, E. Wang, Journal of Molecular Catalysis A: Chemical 225 (2005) 203-212.
[73] H.Z.a.J.F. Banfield, Journal of Physical Chemistry B 104 (2000) 3481-3487.
[74] A.A. Gribb, J.F. Banfield, American Mineralogist 82 (1997) 717–728.
[75] Y. Zhang, L. Wu, E. Xie, H. Duan, W. Han, J. Zhao, Journal of Power Sources 189 (2009) 1256-1263.
[76] J.-M. Shieh, Y.-F. Lai, Y.-C. Lin, J.-Y. Fang, 奈米通訊 12 (2005) 28.
[77] B. Liu, L. Wen, X. Zhao, Materials Chemistry and Physics 106 (2007) 350-353.
[78] 伍秀菁, 汪若文, 林美吟, 「儀器總覽-化學分析儀器」, 行政院國家科學委員會精密儀器發展中心, 新竹, 2003.
[79] 伍秀菁, 汪若文, 林美吟, 「儀器總覽-材料分析儀器」, 行政院國家科學委員會精密儀器發展中心, 新竹, 2003.
[80] 伍秀菁, 汪若文, 林美吟, 「儀器總覽-表面分析儀器」, 行政院國家科學委員會精密儀器發展中心, 新竹, 2003.
[81] 羅聖全, 「研發奈米科技的基本工具之一電子顯微鏡介紹– TEM」, 2010.
158
[82] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 57 (1985) 603-619.
[83] 胡啟章, 「電化學原理與方法」, 五南圖書, 台北, 2002.
[84] L.M. Peter, K.G.U. Wijayantha, Electrochimica Acta 45 (2000) 4543-4551.
[85] L.M. Peter, E.A. Ponomarev, G. Franco, N.J. Shaw, Electrochimica Acta 45 (1999) 549-560.
[86] S. Sodergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, Journal of Physical Chemistry 98 (1994) 5552-5556.
[87] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, Journal of Physical Chemistry B 101 (1997) 10281-10289.
[88] G. Schlichthorl, N.G. Park, A.J. Frank, Journal of Physical Chemistry B 103 (1999) 782-791.
[89] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Letters 7 (2007) 69-74.
[90] J. Kruger, R. Plass, M. Gra1tzel, P.J. Cameron, L.M. Peter, Journal of Physical Chemistry B 107 (2003) 7536-7539.
[91] J.v.d. Lagemaat, A.J. Frank, Journal of Physical Chemistry B 105 (2001) 11194-11205.
[92] H. Kwon, S. Kang, Materials Transactions 49 (2008) 1594-1599.
[93] D. He, F. Lin, Materials Letters 61 (2007) 3385-3387.
[94] D.S. Kim, S.-Y. Kwak, Applied Catalysis A: General 323 (2007) 110-118.
159
[95] Y. Li, X. Sun, H. Li, S. Wang, Y. Wei, Powder Technology 194 (2009) 149-152.
[96] H. Lin, C. Huang, W. Li, C. Ni, S. Shah, Y. Tseng, Applied Catalysis B: Environmental 68 (2006) 1-11.
[97] M. D Arienzo, . Scotti, L. ahba, C. Battocchio, E. Bemporad, A. Nale, F. Morazzoni, Applied Catalysis B: Environmental 93 (2009) 149-155.
[98] K.A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, M. Rekas, Catalysis Today 144 (2009) 7-12.
[99] J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Journal of hazardous materials 168 (2009) 253-261.
[100] A. Welte, C. Waldauf, C. Brabec, P.J. Wellmann, Thin Solid Films 516 (2008) 7256-7259.
[101] C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Applied Surface Science 254 (2008) 2685-2689.
[102] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
[103] D. Wu, M. Long, W. Cai, C. Chen, Y. Wu, Journal of Alloys and Compounds 502 (2010) 289-294.
[104] F. Dong, W. Zhao, Z. Wu, S. Guo, Journal of hazardous materials 162 (2009) 763-770.
[105] M. Fujita, Nature Photonics 7 (2013) 264-265.
[106] J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Chemistry of Materials 14 (2002) 3808-3816.
160
[107] J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, Journal of colloid and interface science 334 (2009) 58-64.
[108] J. Yu, L. Qi, M. Jaroniec, Journal of Physical Chemistry C 114 (2010) 13118–13125
[109] L.V. Saraf, S.I. Patil, S.B. Ogale, S.R. Sainkar, S.T. Kshirsager, International Journal of Modern Physics B 12, (1998) 2635-2647.
[110] Y. Lei, L.D. Zhang, Journal of Materials Research 16 (2001) 1138-1144.
[111] T. Berger, D. Monllor-Satoca, M. Jankulovska, T. Lana-Villarreal, R. Gomez, Chemphyschem : a European journal of chemical physics and physical chemistry 13 (2012) 2824-2875.
[112] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, Journal of Physical Chemistry B 107 (2003) 8607-8611.
[113] S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Journal of photochemistry and photobiology. B, Biology 103 (2011) 111-117.
[114] 李光亮, 「有機矽高分子化學」, 科學出版社, 北京, 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *