帳號:guest(3.144.98.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳秉宏
作者(外文):Chen, Bing Hong
論文名稱(中文):廢料之復活: 利用鍍膜及電漿表面改質技術於回收矽/碳化矽之複合材 與其鋰離子電池之應用
論文名稱(外文):A Revival of Waste: Surface Modification via Coating and Plasma Jet in Recycled Si/SiC Composite for Lithium Ion Batteries
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq Gong
口試委員(中文):胡啟章
石東益
劉偉仁
蕭立殷
口試委員(外文):Hu, Chi Chang
Shih, Toung Yi
Liu, Wei Ren
Hsiao, Li Yin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031806
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:200
中文關鍵詞:鋰離子電池廢料回收大氣電漿表面改質鍍膜
外文關鍵詞:Lithium ion batteriesSiliconRecycled wasteAtmospheric pressure plasmaSurface modificationCoating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:149
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去數十年,鋰離子電池的發展被視為一開發的主流來解決能源儲存裝置之議題。在此相關產業蓬勃發展的同時,高電容密度以及低環境影響的條件已被當作鋰離子電池正負極活物選用時的基本要求。現今負極活性材料,多採用碳材為主而限制了其高電容量之發展性。其中矽基負極材料,因充放電過程中形成Li15Si4合金所貢獻之理論電容量高達3590 mAh/g 可吻合高電容量的條件,被認定為最具潛力來取代傳統碳基電池的潛力材料,但卻因其合金化過程所造成的體積膨脹與伴隨的固態電解質生成相,造成電容量之衰減而影響其應用端的發展。為了克服矽基電池的缺點,大部份的研究致力於 (1) 合成各種特殊形貌來縮小矽粉體至奈米尺度, (2) 包覆或混合添加物於粉體上或漿料中,或 (3) 加入電解液添加劑等方法。然而,上述等方法往往與商業化之低成本以及環保之低污染源的需求大相逕庭。
本論文擬開發低成本且環境友善之矽基高容量鋰電池負極材料。材料端選用自太陽能切削廢液,回收純化後所得之回收矽廢料為活性材料,其微米尺度粉體遠大於一般效能較好之奈米尺度粉體,且其表面含有豐富的有機鍵結與原生氧化層。有別於傳統之方法,多種表面改質技術於本論文中提出,其技術包含表面碳薄膜鍍製與大氣電漿處理,係作用於矽基電池極片表面,由介面著手優化其表面鍵結組態,來抑制固態電解液相之生成。此外,更佐以整體電池極片之空間佈局,並配合添加劑以及導電劑之調控,增加矽基回收廢料之循環壽命。本論文中所開發之技術相較於其他化學合成方法來說,除了簡易、快速、低成本且環境友善外,更可有效地達到優異電性的表現,預期所開之各種表面改質技術能推廣至更多不同電池材料系統中。咸信本文所選用之廢料回收之負極材料,可適用於未來高電容量之商業化發展鋰離子電池中。 
In the past decade, the rising development of lithium ion batteries (LIBs) has been recognized as a tidal current for solving energy storage related issues. Under this technical billow, the demands of active materials with lower environmental impact and higher energy density are considered as the criteria for LIBs materials. Especially for anodic material, the present carbon-based electrode is limited in the potential applications with high capacity because of its theoretic capacity (372 mAh/g). To achieve the goal for high capacity anodes, silicon (Si) with 3590 mAh/g theoretical capacity meets the requirement by forming Li15Si4 phase during cycling processes to replace present conventional carbon-based batteries. However, the capacity fading caused by the intrinsic drawbacks of volumetric expansion and continuous formation of solid electrolyte interphase hinders the dissemination of Si-based LIBs. To overcome the disadvantages of Si, numerous studies have endeavored (1) to shrink Si particles to nanometer scales by using various morphology-chemical synthesis techniques, (2) to wrap or mix conductive additives onto particles or into slurries, and (3) to add electrolyte additives. Unfortunately, the as-mentioned methods mostly fail to accommodate the cost-effectiveness of commercialization and low pollution of environmental friendliness.
In the pursuit of low cost and high environmental friendly anode material, a distinct resource of Si-based anode material is explored in this study. The recycled material is extracted from the cutting waste fluid produced in solar panel industry. After purification technology of chemical rinsing and physical separation, the obtained composites show much larger particle size than commonly nanolized Si particles, and possess the abundant organic bonds and native oxide on the surface of particle. Unlike conventional methods to focus on the synthesis process of powder, the as-prepared electrodes will be treated via various surface modifications, including techniques of carbon deposition and atmospheric pressure plasma jet. The combined processing reduces the capacity degradation by interfacial control to convert the surface bonds with the effectiveness to suppress the growth of SEI, and then maintain the stabilization of electrode during cycling. In addition, the entire electrode collocates with conductive agent and electrolyte additive to provide the conductivity and to improve the internal SEI formation. Overall, the developed techniques of surface modifications are not only scalable, simple, low-cost and environmental friendly but also effective to achieve the excellent performance with high capacity. It is expected for similar potential usage in others battery system. The selected recycled waste for anodic material should be applicable and suitable for the future blueprint in the commercialization for LIBs.
Contents 1
Figures 6
Tables……………………………………………………………………14
Chapter 1 15
1.1 Background 15
1.2 Motivations and Objectives 17
1.3 Stages for Reviving Wafer Waste 18
1.3.1 Stage I. Carbon (C) Additives and Pitch Wrapping Technique (PWT) 18
1.3.2 Stage II. Carbon Assisted Technique (CAT by sputtering) 18
1.3.3 Stage III. Nitrogen-Atmospheric Pressure Plasma Jet (N-APPJ) 19
1.3.4 Stage IV. Multiple Surface Modification by Plasma Enhanced Carbon Veil (PEC-veil) 19
1.3.5 Stage V. Synergistic Fusion of Spatial and Interfacial Control40 20
Chapter 2 Literature Survey 21
2.1 Environmental issues 21
2.2 Renewable energies 22
2.3 Silicon Wafer Waste 23
2.4 Lithium Ion Batteries (LIBs) 27
2.4.1 Evolution of LIBs 27
2.4.2 The Reaction Mechanism of LIBs 32
2.4.3 Evolution of Anode Materials 36
2.5 Si-based Anode Materials 40
2.5.1. Basic Concept of Si-based Anode 40
2.5.2 Particle Size Effects in Si-based Lithium-ion Battery 46
2.5.3 Spatial Control: Architectural Designs of Si/C Hybrid Anode Materials 49
2.5.5 Si-N compounds and Li-N matrix 56
2.6 Methodologies of Micro-sized Si/SiC Composites from Wafer Waste 59
Chapter 3 Experimental Details 61
3.1 Material Preparation 61
3.1.1 Waste from Solar Industry 61
3.1.2 Carbon Assisted Method(CAT) and Pitch Wrapping Technique (PWT) 61
3.1.3 Nitrogen Atmospheric Pressure Plasma Jet (N-APPJ) 62
3.1.4 Carbon Veil (C-veil) and Plasma Enhanced C-veil (PEC-veil) 63
3.1.5 Double-Plasma Enhanced Carbon Shield (D-PECS) 63
3.2 Characterization an Analysis 64
3.2.1 Phase Identification 64
3.2.2 Compositional Evaluation and Element Mapping 64
3.3.3 Morphology Observation 64
3.3 Electrochemical Analysis 65
3.3.1 Electrode Parameters and Battery Assembly 65
3.1.2 Cyclability and Rate Capability Measurement 65
3.3.3 Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) 66
Results and Discussions 67
Chapter 4 Preliminary Examinations of Si/SiC composites 67
4.1 Phase Identifications, Morphologies and Particle Distribution 68
4.2 Wafer Orientation and Native Oxide 71
4.3 Surface bonds of Pristine Powder from Waste 73
4.4 Performance of Recycled Waste without Treatment 75
4.5 Stage I. Carbon Additives and Pitch Wrapping 77
Chapter 5 Interfacial Control for Si/SiC Composites by Carbon Assisted Technique (CAT) 85
5.1 Simplify the Waste-based Electrode 85
5.2 Development of Stage II. Carbon Assisted Technique (CAT) 85
5.3 Characteristics of Carbon Assisted Technique (CAT) for Modified Electrode 86
5.4 Optimum Thickness of Carbon Assisted Technique (CAT) 89
5.5 Comparison of Carbon Assisted Technique (CAT) and Pitch Wrapping Technique (PWT) 90
5.6 Investigation of Electrochemical Behaviors 95
5.7 Summaries of Stage II. Carbon Assisted Technique (CAT) 98
Chapter 6 Interfacial Control for Si/SiC Composites by Nitrogen-Atmospheric Pressure Plasma Jet (N-APPJ) 99
6.1 Preface 99
6.2 Chemical Compositions of Surface Bonds 100
6.3 Qualitative and Quantitate Analysis for N-APPJ 104
6.4 Plasma Mechanism of N-APPJ and Electrochemical Behaviors after N-APPJ 111
6.5 Investigation of Formed SEI and Electrodes after First Cycle 118
6.6 Summaries of Stage III. Nitrogen-Atmospheric Pressure Plasma Jet (N-APPJ) 126
Chapter 7 Interfacial Control for Si/SiC Composites by Stage IV. Multiple Surface Modifications (C-veil and PEC-veil) 127
7.1 Preface 127
7.2 Schematic Diagram of Stage IV. C-veil and PEC-veil 128
7.3 Characteristics and Optimized Thickness of C-veil and PEC-veil 129
7.4 Qualitative and Quantitate Analysis for C-veil and PEC-veil 134
7.5 Electrochemical Behaviors after the Modifications of C-veil and PEC-veil 139
7.6 Investigation of Formed SEI and Electrodes after First Cycle 146
7.7 Summaries of Stage IV. Multiple Surface Modifications: C-veil and PEC-veil 153
Chapter 8 Stage V. Synergetic Fusion Of Spatial & Interfacial Control 155
8.1 Preface 155
8.2 Infrastructure of Stage V. Synergetic Fusion of Spatial & Interfacial Control 157
8.3 Spatial Control: Active/Inactive/Conductive Additives 160
8.4 Interfacial Control: Internal/External/Fusion electrode modifications 165
8.5 Rate Performance of Micro-Sized Si Electrodes and Impedance Analysis 169
8.6 Homogeneity and Effects of D-PECS Electrode Modification 172
8.7 Investigation of Formed SEI and Electrodes after First Cycle 176
8.8 Summaries of Stage V. Synergetic Fusion of Spatial and Interfacial Control 181
Chapter 9 Conclusions 183
References 187

(1) T. H. Tsai; Y. P. Shih; Y. F. Wu. Journal of the Air & Waste Management Association, 2013, 63(5), 521.
(2) K. Tomono; H. Furuya; S. Miyamoto; Y. Okamura; M. Sumimoto; Y. Sakata; R. Komatsu; M. Nakayama. Separation and Purification Technology, 2013, 103, 109.
(3) K. Tomono; Y. Okamura; H. Furuya; M. Satoh; S. Miyamoto; R. Komatsu; M. Nakayama. Journal of Materials Science, 2011, 47(7), 3227.
(4) H. J. Möller. Advanced Engineering Materials, 2004, 6(7), 501.
(5) Y. Li; K. Yan; H.-W. Lee; Z. Lu; N. Liu; Y. Cui. Nature Energy, 2016, 1(2), 15029.
(6) H. D. Jang; H. Kim; H. Chang; J. Kim; K. M. Roh; J. H. Choi; B. G. Cho; E. Park; H. Kim; J. Luo; J. Huang. Sci Rep, 2015, 5, 9431.
(7) B. H. Chen; S. I. Chuang; W. R. Liu; J. G. Duh. ACS applied materials & interfaces, 2015, 7(51), 28166.
(8) C. Wang; H. Wu; Z. Chen; M. T. McDowell; Y. Cui; Z. Bao. Nat Chem, 2013, 5(12), 1042.
(9) M. Ashuri; Q. He; L. L. Shaw. Nanoscale, 2015, 8(1), 74.
(10) X. Su; Q. Wu; J. Li; X. Xiao; A. Lott; W. Lu; B. W. Sheldon; J. Wu. Advanced Energy Materials, 2014, 4(1).
(11) Z. Favors; W. Wang; H. H. Bay; Z. Mutlu; K. Ahmed; C. Liu; M. Ozkan; C. S. Ozkan. Sci Rep, 2014, 4, 5623.
(12) J. M. Tarascon; M. Armand. Nature, 2001, 414, 359.
(13) S. Flandrois; B. Simon. Carbon, 1999, 37(2), 165.
(14) H. Wu; Y. Cui. Nano Today, 2012, 7(5), 414.
(15) W. J. Zhang. Journal of Power Sources, 2011, 196(1), 13.
(16) W. J. Lee; T. H. Hwang; J. O. Hwang; H. W. Kim; J. Lim; H. Y. Jeong; J. Shim; T. H. Han; J. Y. Kim; J. W. Choi; S. O. Kim. Energy Environ. Sci., 2014, 7(2), 621.
(17) T. Kim; Y. H. Mo; K. S. Nahm; S. M. Oh. Journal of Power Sources, 2006, 162(2), 1275.
(18) R. Bhandavat; G. Singh. The Journal of Physical Chemistry C, 2013, 117(23), 11899.
(19) X. H. Liu; L. Zhong; S. Huang; S. X. Mao; T. Zhu; J. Y. Huang. ACS Nano, 2012, 6(2), 1522.
(20) J. Zheng; H. Zheng; R. Wang; L. Ben; W. Lu; L. Chen; L. Chen; H. Li. Physical chemistry chemical physics : PCCP, 2014, 16(26), 13229.
(21) N. Yan; F. Wang; H. Zhong; Y. Li; Y. Wang; L. Hu; Q. Chen. Sci Rep, 2013, 3, 1568.
(22) K. Song; S. Yoo; K. Kang; H. Heo; Y.-M. Kang; M. H. Jo. Journal of Power Sources, 2013, 229, 229.
(23) C. Pereira-Nabais; J. Światowska; A. Chagnes; F. Ozanam; A. Gohier; P. Tran-Van; C. S. Cojocaru; M. Cassir; P. Marcus. Applied Surface Science, 2013, 266, 5.
(24) M. Nie; D. P. Abraham; Y. Chen; A. Bose; B. L. Lucht. The Journal of Physical Chemistry C, 2013, 117(26), 13403.
(25) K. W. Schroder; H. Celio; L. J. Webb; K. J. Stevenson. The Journal of Physical Chemistry C, 2012, 116(37), 19737.
(26) Y. M. Lee; J. Y. Lee; H. T. Shim; J. K. Lee; J. K. Park. Journal of The Electrochemical Society, 2007, 154(6), A515.
(27) R. Yi; F. Dai; M. L. Gordin; H. Sohn; D. Wang. Advanced Energy Materials, 2013, 3(11), 1507.
(28) S. Guruvenket; S. Andrie; M. Simon; K. W. Johnson; R. A. Sailer. Plasma Processes and Polymers, 2011, 8(12), 1126.
(29) N. Li; S. Jin; Q. Liao; H. Cui; C. X. Wang. Nano Energy, 2014, 5, 105.
(30) V. Chabot; K. Feng; H. W. Park; F. M. Hassan; A. R. Elsayed; A. Yu; X. Xiao; Z. Chen. Electrochimica Acta, 2014, 130, 127.
(31) H. Yoo; J. I. Lee; H. Kim; J. P. Lee; J. Cho; S. Park. Nano letters, 2011, 11(10), 4324.
(32) J. Song; S. Chen; M. Zhou; T. Xu; D. Lv; M. L. Gordin; T. Long; M. Melnyk; D. Wang. J. Mater. Chem. A, 2014, 2(5), 1257.
(33) Y. K. Jeong; T. W. Kwon; I. Lee; T. S. Kim; A. Coskun; J. W. Choi. Energy Environ. Sci., 2015, 8(4), 1224.
(34) Y. H. Huang; Q. Bao; B. H. Chen; J. G. Duh. Small, 2015, 11(19), 2314.
(35) T. Osaka; H. Nara; T. Momma; T. Yokoshima. J. Mater. Chem. A, 2014, 2(4), 883.
(36) T. Hasegawa; S. R. Mukai; Y. Shirato; H. Tamon. Carbon, 2004, 42(12-13), 2573.
(37) H. Wu; G. Chan; J. W. Choi; I. Ryu; Y. Yao; M. T. McDowell; S. W. Lee; A. Jackson; Y. Yang; L. Hu; Y. Cui. Nature nanotechnology, 2012, 7(5), 310.
(38) D. Tang; R. Yi; M. L. Gordin; M. Melnyk; F. Dai; S. Chen; J. Song; D. Wang. Journal of Materials Chemistry A, 2014, 2(27), 10375.
(39) B. H. Chen; C. C. Chang; J. G. Duh. Energy Technology, 2016.
(40) B. H. Chen; S. I. Chuang; J. G. Duh. Journal of Power Sources, 2016, 331, 198.
(41) J. M. H. David Timmons, Brian Roach. 2014.
(42) BP Statistical Review of Wolrd Energy. 2015.
(43) BP World Energy Consumption by Sources. Statistical Review of Wolrd Energy. 2014.
(44) T. A. Boden, Marland, G., Andres R. J., 2015.
(45) O. Ellabban; H. Abu-Rub; F. Blaabjerg. Renewable and Sustainable Energy Reviews, 2014, 39, 748.
(46) N. Heidari; J. M. Pearce. Renewable and Sustainable Energy Reviews, 2016, 55, 899.
(47) H. Lund. Renewable Energy, 2006, 31(4), 503.
(48) D. Sarti; R. Einhaus. Solar Energy Materials and Solar Cells, 2002, 72(1-4), 27.
(49) Y. F. Wu; Y.-M. Chen. Separation and Purification Technology, 2009, 68(1), 70.
(50) J. Shibata; N. Murayama; K. Nagae. Kagaku Kogaku Ronbunshu, 2006, 32(1), 93.
(51) L. Zhang; A. Ciftja. Solar Energy Materials and Solar Cells, 2008, 92(11), 1450.
(52) T. Y. Huang; B. Selvaraj; H. Y. Lin; H. S. Sheu; Y. F. Song; C. C. Wang; B. J. Hwang; N. L. Wu. ACS Sustainable Chemistry & Engineering, 2016, 4(10), 5769.
(53) Battery University. http://batteryuniversity.com/learn/article/secondary_batteries.
(54) J. M. Tarascon; M. Armand. Nature, 2001, 414(6861), 359.
(55) F. P. J. Hajek, 8,10, 1949. 1949.
(56) U. S. P. N. K. A. Klinedinst, 1979, 176, 214. 1979.
(57) U. S. P. N. A. A. Schneider, 1972, 010, 043. 1972.
(58) M. S. Whittingham. Science, 1976, 192(4244), 1126.
(59) J. Amarilla. Solid State Ionics, 2000, 127(1-2), 73.
(60) U. S. P. N. M. S. Whittingham, 1977, 049, 887. 1977.
(61) U. S. P. N. Y. Sakurai, 1987, 675, 260. 1987.
(62) K. Brandt. Journal of Power Sources, 1986, 18(2-3), 117.
(63) K. Mizushima; P. C. Jones; P. J. Wiseman; J. B. Goodenough. Materials Research Bulletin, 1980, 15(6), 783.
(64) M. S. Whittingham. Journal of The Electrochemical Society, 1977, 124(9), 1387.
(65) E. Peled. Journal of The Electrochemical Society, 1979, 126(12), 2047.
(66) V. R. Koch. Journal of The Electrochemical Society, 1982, 129(1), 1.
(67) D. Aurbach. Journal of The Electrochemical Society, 1995, 142(9), 2882.
(68) R. J. N. Bruno Scrosati. Lithium polymer batteries. In APplications of Electroactive Polymers, Springer Netherlands: 1993; pp 182.
(69) D. W. M. M. Armand, J. Broadhead, B. C. H. Steele, 「Materials for Advanced Batteries」, Plenum press, New York, (1980), 145.
(70) R. Bittihn; R. Herr; D. Hoge. Journal of Power Sources, 1993, 43(1-3), 223.
(71) E. Plichta; M. Salomon; S. Slane; M. Uchiyama; D. Chua; W. B. Ebner; H. W. Lin. Journal of Power Sources, 1987, 21(1), 25.
(72) J. Molenda. Solid State Ionics, 1989, 36(1-2), 53.
(73) N. t. overview.
(74) A. Manthiram; A. Vadivel Murugan; A. Sarkar; T. Muraliganth. Energy & Environmental Science, 2008, 1(6), 621.
(75) M. Winter; J. O. Besenhard; M. E. Spahr; P. Novák. Advanced Materials, 1998, 10(10), 725.
(76) F. Rahman; S. Rehman; M. A. Abdul-Majeed. Renewable and Sustainable Energy Reviews, 2012, 16(1), 274.
(77) J. B. Goodenough; Y. Kim. Chemistry of Materials, 2010, 22(3), 587.
(78) H. J. Ploehn; P. Ramadass; R. E. White. Journal of The Electrochemical Society, 2004, 151(3), A456.
(79) P. Verma; P. Maire; P. Novák. Electrochimica Acta, 2010, 55(22), 6332.
(80) J. T. Han; Y. H. Huang; J. B. Goodenough. Chemistry of Materials, 2011, 23(8), 2027.
(81) J. Hassoun; P. Reale; S. Panero; B. Scrosati; M. Wachtler; M. Fleischhammer; M. Kasper; M. Wohlfahrt-Mehrens. Electrochimica Acta, 2010, 55(13), 4194.
(82) G. W. Jackson; G. E. Blomgren. Journal of The Electrochemical Society, 1969, 116(11), 1483.
(83) J. J. Auborn; K. W. French; S. I. Lieberman; V. K. Shah; A. Heller. Journal of The Electrochemical Society, 1973, 120(12), 1613.
(84) J. R. Dahn; A. K. Sleigh; H. Shi; J. N. Reimers; Q. Zhong; B. M. Way. Electrochimica Acta, 1993, 38(9), 1179.
(85) M. Noel. Journal of Power Sources, 2002, 111(2), 193.
(86) D. W. Wang; H. T. Fang; F. Li; Z. G. Chen; Q. S. Zhong; G. Q. Lu; H.-M. Cheng. Advanced Functional Materials, 2008, 18(23), 3787.
(87) Y. Huang; Z. Lin; M. Zheng; T. Wang; J. Yang; F. Yuan; X. Lu; L. Liu; D. Sun. Journal of Power Sources, 2016, 307, 649.
(88) U. K. Sen; A. Shaligram; S. Mitra. ACS applied materials & interfaces, 2014, 6(16), 14311.
(89) D. Li; X. Zhou; X. Guo; B. Yuan; Y. Liu; C. M. Ortega; L. Sun; Z. Liu. Journal of Alloys and Compounds, 2016, 657, 109.
(90) J. Yang. Electrochemical and Solid-State Letters, 1999, 2(4), 161.
(91) J. Qiu; C. Lai; E. Gray; S. Li; S. Qiu; E. Strounina; C. Sun; H. Zhao; S. Zhang. Journal of Materials Chemistry A, 2014, 2(18), 6353.
(92) Z. S. Christian Julien. Materials for Lithium-Ion Batteries. Springer Science & Business Media: 2012.
(93) J. O. Besenhard. Handbook of Battery Materials. John Wiley & Sons: 2008.
(94) M. S. Whittingham. Chem Rev, 2014, 114(23), 11414.
(95) Y. Tang; Y. Zhang; W. Li; B. Ma; X. Chen. Chem Soc Rev, 2015, 44(17), 5926.
(96) D. Larcher; S. Beattie; M. Morcrette; K. Edström; J. C. Jumas; J.-M. Tarascon. Journal of Materials Chemistry, 2007, 17(36), 3759.
(97) U. Kasavajjula; C. Wang; A. J. Appleby. Journal of Power Sources, 2007, 163(2), 1003.
(98) W.-J. Zhang. Journal of Power Sources, 2011, 196(3), 877.
(99) R. Benedek; M. M. Thackeray. Journal of Power Sources, 2002, 110(2), 406.
(100) J. R. Szczech; S. Jin. Energy Environ. Sci., 2011, 4(1), 56.
(101) D. J. F. A. R. Kamali. Reviews on Advanced Materials Science, 2011, 27, 14.
(102) M. Winter; J. O. Besenhard. Electrochimica Acta, 1999, 45(1-2), 31.
(103) M. Yoshio; T. Tsumura; N. Dimov. Journal of Power Sources, 2005, 146(1-2), 10.
(104) K. Nishikawa; K. Dokko; K. Kinoshita; S.-W. Woo; K. Kanamura. Journal of Power Sources, 2009, 189(1), 726.
(105) X. Yang; H. Huang; Z. Li; M. Zhong; G. Zhang; D. Wu. Carbon, 2014, 77, 275.
(106) J. Yang. Solid State Ionics, 1996, 90(1-4), 281.
(107) J. P. Maranchi; A. F. Hepp; P. N. Kumta. Electrochemical and Solid-State Letters, 2003, 6(9), A198.
(108) H. Kim; M. Seo; M. H. Park; J. Cho. Angew Chem Int Ed Engl, 2010, 49(12), 2146.
(109) J. S. Thorne; J. R. Dahn; M. N. Obrovac; R. A. Dunlap. Journal of The Electrochemical Society, 2011, 158(12), A1328.
(110) Z. Chen; V. Chevrier; L. Christensen; J. R. Dahn. Electrochemical and Solid-State Letters, 2004, 7(10), A310.
(111) J. Li; R. B. Lewis; J. R. Dahn. Electrochemical and Solid-State Letters, 2007, 10(2), A17.
(112) I. Profatilova; N. Choi; K. Yew; W. Choi. Solid State Ionics, 2008, 179(40), 2399.
(113) N. S. Choi; K. H. Yew; K. Y. Lee; M. Sung; H. Kim; S. S. Kim. Journal of Power Sources, 2006, 161(2), 1254.
(114) L. Chen; X. Xie; J. Xie; K. Wang; J. Yang. Journal of Applied Electrochemistry, 2006, 36(10), 1099.
(115) D. Ma; Z. Cao; A. Hu. Nano-Micro Letters, 2014, 6(4), 347.
(116) B. Liang; Y. Liu; Y. Xu. Journal of Power Sources, 2014, 267, 469.
(117) C. J. Wen; R. A. Huggins. Journal of Solid State Chemistry, 1981, 37(3), 271.
(118) V. L. Chevrier; J. R. Dahn. Journal of The Electrochemical Society, 2009, 156(6), A454.
(119) P. Limthongkul; Y. I. Jang; N. J. Dudney; Y. M. Chiang. Acta Materialia, 2003, 51(4), 1103.
(120) T. D. Hatchard; J. R. Dahn. Journal of The Electrochemical Society, 2004, 151(6), A838.
(121) J. Li; J. R. Dahn. Journal of The Electrochemical Society, 2007, 154(3), A156.
(122) M. N. Obrovac; L. Christensen. Electrochemical and Solid-State Letters, 2004, 7(5), A93.
(123) J. H. Ryu; J. W. Kim; Y. E. Sung; S. M. Oh. Electrochemical and Solid-State Letters, 2004, 7(10), A306.
(124) X. L. Wu; Y. G. Guo; L. J. Wan. Chem Asian J, 2013, 8(9), 1948.
(125) D. Aurbach. Journal of Power Sources, 2000, 89(2), 206.
(126) S. Zhou; X. Liu; D. Wang. Nano letters, 2010, 10(3), 860.
(127) L. F. Cui; Y. Yang; C. M. Hsu; Y. Cui. Nano letters, 2009, 9(9), 3370.
(128) N. Liu; H. Wu; M. T. McDowell; Y. Yao; C. Wang; Y. Cui. Nano letters, 2012, 12(6), 3315.
(129) L. Y. Yang; H. Z. Li; J. Liu; Z. Q. Sun; S. S. Tang; M. Lei. Sci Rep, 2015, 5, 10908.
(130) S. Sonae; M. Ara; H. Tada. Japanese Journal of Applied Physics, 2012, 51, 06FG06.
(131) Y. Son; Y. Son; M. Choi; M. Ko; S. Chae; N. Park; J. Cho. Nano letters, 2015, 15(10), 6914.
(132) M. Ge; J. Rong; X. Fang; C. Zhou. Nano letters, 2012, 12(5), 2318.
(133) J. Xiao; W. Xu; D. Wang; D. Choi; W. Wang; X. Li; G. L. Graff; J. Liu; J. G. Zhang. Journal of The Electrochemical Society, 2010, 157(10), A1047.
(134) A. Magasinski; P. Dixon; B. Hertzberg; A. Kvit; J. Ayala; G. Yushin. Nature materials, 2010, 9(4), 353.
(135) J. G. Ren; Q. H. Wu; G. Hong; W. J. Zhang; H. Wu; K. Amine; J. Yang; S. T. Lee Energy Technology, 2013, 1(1), 77.
(136) C. K. Chan; H. Peng; G. Liu; K. McIlwrath; X. F. Zhang; R. A. Huggins; Y. Cui. Nature nanotechnology, 2008, 3(1), 31.
(137) S. Bourderau; T. Brousse; D. M. Schleich. Journal of Power Sources, 1999, 81-82, 233.
(138) H. Li. Electrochemical and Solid-State Letters, 1999, 2(11), 547.
(139) J. Graetz; C. C. Ahn; R. Yazami; B. Fultz. Electrochemical and Solid-State Letters, 2003, 6(9), A194.
(140) X. Zhou; Y. X. Yin; L. J. Wan; Y. G. Guo. Advanced Energy Materials, 2012, 2(9), 1086.
(141) Y. Wen; Y. Zhu; A. Langrock; A. Manivannan; S. H. Ehrman; C. Wang. Small, 2013, 9(16), 2810.
(142) N. Liu; Z. Lu; J. Zhao; M. T. McDowell; H. W. Lee; W. Zhao; Y. Cui. Nature nanotechnology, 2014, 9(3), 187.
(143) S. Li; X. Qin; H. Zhang; J. Wu; Y. B. He; B. Li; F. Kang. Electrochemistry Communications, 2014, 49, 98.
(144) S. H. Ng; J. Wang; D. Wexler; K. Konstantinov; Z. P. Guo; H. K. Liu. Angew Chem Int Ed Engl, 2006, 45(41), 6896.
(145) S. C. Jung; J. W. Choi; Y. K. Han. Nano letters, 2012, 12(10), 5342.
(146) M. B. Pinson; M. Z. Bazant. Journal of the Electrochemical Society, 2012, 160(2), A243.
(147) M. Armand; J. M. Tarascon. Nature, 2008, 451(7179), 652.
(148) Y. C. Lin; T. Y. Wang; C. W. Lan; C. Y. Tai. Powder Technology, 2010, 200(3), 216.
(149) Q. Bao; Y. H. Huang; C. K. Lan; B. H. Chen; J. G. Duh. Electrochimica Acta, 2015, 173, 82.
(150) Z. Chen; C. Wang; J. Lopez; Z. Lu; Y. Cui; Z. Bao. Advanced Energy Materials, 2015, 5(8), n/a.
(151) J. Chun; S. An; J. Lee. J. Mater. Chem. A, 2015, 3(43), 21899.
(152) C. Zhang; A. Song; P. Yuan; Q. Wang; P. Wang; S. Zhang; G. Cao; J. H. Hu. Materials Letters, 2016, 171, 63.
(153) L. Luo; P. Zhao; H. Yang; B. Liu; J. G. Zhang; Y. Cui; G. Yu; S. Zhang; C. M. Wang. Nano letters, 2015, 15(10), 7016.
(154) X. Bai; Y. Yu; H. H. Kung; B. Wang; J. Jiang. Journal of Power Sources, 2016, 306, 42.
(155) J. Zhao; Z. Lu; H. Wang; W. Liu; H. W. Lee; K. Yan; D. Zhuo; D. Lin; N. Liu; Y. Cui. J Am Chem Soc, 2015, 137(26), 8372.
(156) I. A. Shkrob; J. F. Wishart; D. P. Abraham. The Journal of Physical Chemistry C, 2015, 119(27), 14954.
(157) V. A. Agubra; J. W. Fergus. Journal of Power Sources, 2014, 268, 153.
(158) S. P. V. Nadimpalli; V. A. Sethuraman; S. Dalavi; B. Lucht; M. J. Chon; V. B. Shenoy; P. R. Guduru. Journal of Power Sources, 2012, 215, 145.
(159) W. Y. Chou; Y. C. Jin; J. G. Duh; C.-Z. Lu; S. C. Liao. Applied Surface Science, 2015, 355, 1272.
(160) N. Yabuuchi; K. Shimomura; Y. Shimbe; T. Ozeki; J. Y. Son; H. Oji; Y. Katayama; T. Miura; S. Komaba. Advanced Energy Materials, 2011, 1(5), 759.
(161) S. Komaba; K. Shimomura; N. Yabuuchi; T. Ozeki; H. Yui; K. Konno. The Journal of Physical Chemistry C, 2011, 115(27), 13487.
(162) X. Yu; H. Yang; H. Meng; Y. Sun; J. Zheng; D. Ma; X. Xu. ACS applied materials & interfaces, 2015, 7(29), 15961.
(163) C. Hwang; Y. G. Cho; N. R. Kang; Y. Ko; U. Lee; D. Ahn; J. Y. Kim; Y. J. Kim; H. K. Song. Journal of Power Sources, 2015, 298, 8.
(164) L. Wei; C. Chen; Z. Hou; H. Wei. Sci Rep, 2016, 6, 19583.
(165) C. Hwang; S. Joo; N. R. Kang; U. Lee; T. H. Kim; Y. Jeon; J. Kim; Y. J. Kim; J. Y. Kim; S. K. Kwak; H. K. Song. Sci Rep, 2015, 5, 14433.
(166) I. Kovalenko; B. Zdyrko; A. Magasinski; B. Hertzberg; Z. Milicev; R. Burtovyy; I. Luzinov; G. Yushin. Science, 2011, 334(6052), 75.
(167) M. Ulldemolins; F. Le Cras; B. Pecquenard; V. P. Phan; L. Martin; H. Martinez. Journal of Power Sources, 2012, 206, 245.
(168) V. Etacheri; O. Haik; Y. Goffer; G. A. Roberts; I. C. Stefan; R. Fasching; D. Aurbach. Langmuir, 2012, 28(1), 965.
(169) J. Yang; R. C. de Guzman; S. O. Salley; K. Y. S. Ng; B.-H. Chen; M. M. C. Cheng. Journal of Power Sources, 2014, 269, 520.
(170) R. C. de Guzman; J. Yang; M. M. C. Cheng; S. O. Salley; K. Y. S. Ng. Journal of Materials Chemistry A, 2014, 2(35), 14577.
(171) H. M. Jeong; J. W. Lee; W. H. Shin; Y. J. Choi; H. J. Shin; J. K. Kang; J. W. Choi. Nano letters, 2011, 11(6), 2472.
(172) S. L. Katar; D. Hernandez; A. B. Labiosa; E. M. Vargas; L. Fonseca; B. Weiner and G. Morell. Electrochimica Acta, 2010, 55, 2269.
(173) C. Y. Wu; C. C. Chang and J. G. Duh. Journal of Power Sources, 2016, 325, 64.
(174) X. Han; H. Chen; X. Li; J. Wang; C. Li; S. Chen; and Y. Yang. Journal of Materials Chemistry A, 2016, 4, 434.
(175) Y. S. Huang and W. R. Liu. “Preparation and characterization of Si-based composite anode materials for lithium ion batteries”, 2014.
(176) B. H. Chen; S. I. Chuang and J. G. Duh. ACS Sustainable Chemistry and Engineering, 2016 (In press).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *