|
[1] K. Franze, J. Guck, “The biophysics of neuronal growth”, Reports on Progress in Physics, Vol. 73(9), 094601, 2010. [2] P. Roussos, V. Haroutunian, “Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities”, frontiers in Cellular Neuroscience, Vol. 8(5), 2014. [3] A. Mitra, B. Dey, “Therapeutic Interventions in Alzheimer Disease”, INTECH open science/open mind, Chap. 12, pp. 291-317, 2013. [4] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E. M. Stadlan, “Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease”, Neurology, Vol. 34(7), pp. 939-945, 1984. [5] B. L. Wolozin, A. Pruchnicki, D. W. Dickson, P. Davies, “A Neuronal Antigen in the Brains of Alzheimer Patients”, Science, Vol. 232(4750), pp. 648-650, 1986. [6] V. Krishnamurthy, N. S. Issac, J. Natarajan, “Computational Identification of Alzheimer’s Disease Specific Transcription Factors using Microarray Gene Expression Data”, Journal of Proteomics & Bioinformatics, Vol. 2(12), pp. 505-508, 2009. [7] Silver. J, J.H. Miller, “Regeneration beyond the glial scar”, Nat Rev Neurosci, Vol. 5(2), pp. 146-156, 2004. [8] Seil, J. T. and T. J. Webster, “Electrically active nanomaterials as improved neural tissue regeneration scaffolds”, Wiley Interdiscip Rev Nanomed Nanobiotechnol, Vol. 2(6), pp.635-647, 2010. [9] S. Strittmatter, “Spinal Cord Regeneration: Ready, Set, Nogo”, Eukaryon, Vol. 6(7), pp. 55-60, 2010. [10] E. Detrait, C. S. Eddleman, S. Yoo, M. Fukuda, M. P. Nguyen, G. D. Bittner, H. M. Fishman, “Axolemmal repair requires proteins that mediate synaptic vesicle fusion”, Journal of Neurobiology, Vol. 44(4), pp. 382-391, 2000. [11] N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, “Nervous Systems”, Biology/Edition 8, Chap. 49, 2007. [12] W. A. Catterall, “Activation of the Action Potential Na+ Ionophore by Neurotoxins”, The Journal of Biological Chemistry, Vol. 252(23), pp. 8669-8676, 1997. [13] N. Spruston, Y. Schiller, G. Stuart, B. Sakmann, “Activity-Dependent Action Potential Invasion and Calcium Influx into Hippocampal CA1 Dendrites”, Science, Vol. 268(14), pp. 297-300, 1995. [14] C. L. Stanfield, “Nerve cells and electrical signaling”, Principle of Human Physiology/4th Edition, Chap. 7, pp. 166-195, 2010. [15] J. S. Park, K. Park, H. T. Moon, D. G. Woo, H. N. Yang, K. H. Park, “Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of PC12 cells”, Langmuir, Vol. 25(1), pp. 451-457, 2009. [16] K. Kimura, Y. Yanagida, T. Haruyama, E. Kobatake, M. Aizawa, “Gene expression in the electrically stimulated differentiation of PC12 cells”, J. Biotechnol, Vol. 63(1), pp. 55-65, 1998. [17] M. Yamada, K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, T. Kondo, “Electrical stimulation modulates fate determination of differentiating embryonic stem cells”, Stem cells, Vol. 25(3), pp. 562-570, 2007. [18] S. Manivannan, S. Terakawa, “Rapid sprouting of filopodia in nerve terminals of chromaffin cells, PC12 cells, and dorsal root neurons induced by electrical stimulation”, J. Neurosci. Vol. 14(10), pp. 5917-5928, 2007. [19] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007. [20] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs”, Journal of the American Chemical Society, Vol. 130(33), pp. 10876-10877, 2008. [21] M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of focal heat destruction of liver tumors”, Journal of Surgical Research, Vol. 127(2), pp. 208-223, 2005. [22] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy”, Nano Letters, Vol. 10(9), pp. 3318-3323, 2010. [23] Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, K. M. Arsikin, S. P. Jovanovic, A. C. Pantovic, M. D. Dramicanin, and V. S. Trajkovic, “ In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes”, Biomaterials, Vol. 32(4), pp. 1121-1129, 2011. [24] C. M. Voge, J. P. Stegemann, “Carbon nanotubes in neural interfacing applications”, Journal of Neural Engineering, Vol. 8, 011001, 2011. [25] B. S. Harrison, A. Atala, “Carbon nanotube applications for tissue engineering”, Biomaterials, Vol. 28(2), pp. 344-353, 2007. [26] A. Abarrategi, M. C. Gutierrez, . Moreno-Vicente, M. J. Hortiguela, V. Ramos, J. L. Lopez-Lacomba, M. L. Ferrer, F. del Monte, “Multiwall carbon nanotube scaffolds for tissue engineering purposes”, Biomaterials, Vol. 29(1), pp. 94-102, 2008. [27] Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao, “Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites”, PNAS, Vol. 110(30), pp. 12295-12300, 2013. [28] H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, “Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates”, Angewandte Chemie, Vol. 118(40), pp. 6828-6832, 2006. [29] D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb, “Comparative Pulmonary Toxicity Assessment of Single-wall Carbon Nanotubes in Rats”, Toxicological Sciences, Vol. 77(1), pp. 117-125, 2003. [30] K. Pulskamp, S. Diabate, H. F. Krug, “Carbon nantubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants”, Toxicology Letters, Vol. 168, pp. 58-74, 2007. [31] J. P. McGann, M. Zhong, E. K. Kim, S. Natesakhawat, M. Jaroniec, J. F. Whitacre, K. Matyjaszewski, T. Kowalewski, “Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro) chemical Performance”, Macromolecular Chemistry and Physics, Vol. 213(10), pp. 1078-1090, 2012. [32] J. L. Ponchon, R. Cespuglio, F. Gonon, M. Jouvet, J. F. Pujol, “Normal Pulse Polarography with Carbon Fiber Electrodes for in Vitro and in Vivo Determination of Catecholamines”, Analytical Chemistry, Vol. 51(9), pp. 1483-1486, 1979. [33] K. T. Kawagoe, J. A. Jankowski, R. M. Wightman, “Etched Carbon-Fiber Electrodes as Amperometric Detectors of Catecholamine Secretion from Isolated Biological Cells”, Analytical Chemistry, Vol. 63(15), pp. 1589-1594, 1991. [34] J. W. Mo, B. Ogorevc, “Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly(1,2-phenylenediamine)-Coated Carbon Fiber”, Analytical Chemistry, Vol. 73(6), pp. 1196-1202, 2001. [35] B. J. Venton, K. P. Troyer, R. M. Wightman, “Response Times of Carbon Fiber Microelectrodes to Dynamic Changes in Catecholamine Concentration”, Analytical Chemistry, Vol. 74(3), pp. 539-546, 2002. [36] R. L. Price, M. C. Waid, K. M. Haberstroh, T. J. Webster, “Selective bone cell adhesion on formulations containing carbon nanofibers”, Biomaterials, Vol. 24, pp. 1877-1887, 2003. [37] G. E. Sidoli, P. A. King, D. J. Setchell, “An in vitro evaluation of a carbon fiber-based post and core system”, The Journal of Prosthetic Dentistry, Vol. 78(1), pp. 5-9, 1997. [38] Y. J. Huang, H. C. Wu, N. H. Tai, T. W. Wang, “Carbon Nanotube Rope with Electrical Stimulation Promotes the Differentiation and Maturity of Neural Stem Cells”, Small, Vol. 8(18), pp. 2869-2877, 2012. [39] J. F. R. Kerr, A. H. Wyline, A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics”, British Journal of Cancer, Vol. 26(4), pp.239-257,1972. [40] N. K. Kuan, E. Passaro, “Apoptosis: programmed cell death”, Archives of Surgery, Vol. 133(7), pp. 773-775, 1998. [41] C. Bussy, H. Ali-Boucetta, K. Kostarelos, “Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes”, Accounts of chemical research, Vol. 46(3), pp. 692-701, 2013. [42] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A. S. Biris, “Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells”, ACS Nano, Vol. 4(6), pp. 3181-3186, 2010. [43] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, R. L. Hunter, “A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks”, Critical Reviews in Toxicology, Vol. 36, pp. 189-217, 2006. [44] N. Li, X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, L. Liu, G. Jin, M. Tang, G. Cheng, “The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates”, Biomaterials, Vol. 32(35), pp. 9374-9382, 2011. [45] H. G. Craighead, C. D. James, A. M. P. Turner, “Chemical and topographical patterning for directed cell attachment”, Current Opinion in Solid State and Materials Science, Vol. 5(2), pp. 177-184, 2001. [46] D. A. Stenger, C. J. Pike, J. J. Hickman, C. W. Cotman, “Surface determinants of neuronal survival and growth on self-assembled monolayers in culture”, Brain Research, Vol. 630(1), pp. 136-147, 1993. [47] L. A. Cyster, D. M. Grant, K. G. Parker, T. L. Parker, “The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells”, Biomolecular Engineering, Vol. 19(2), pp. 171-175, 2002. [48] S. P. Massia, M. M. Holecko, G. R. Ehteshami, “In vitro assessment of bioactive coatings for neural implant applications”, Journal of Biomedical Materials Research Part A, Vol. 68(1), pp. 177-186, 2004. [49] E. B. Malarkey, K. A. Fisher, E. Bekyarova, W. Liu, R. C. Haddon, V. Parpura, “Conductive Single-Walled Carbon Nanotube Substrates Modulate Neuronal Growth”, Nano Letters, Vol. 9(1), pp. 264-268, 2009. [50] H. Hu, Y. Ni, V. Montana, R. C. Hoddon, V. Parpura, “Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth”, Nano Letters, Vol. 4(3), pp. 507-511, 2004. [51] M. Lorenzoni, F. Brandi, S. Dante, A. Giugni, B. Torre, “Simple and effective graphene laser processing for neuron patterning application”, Scientific Reports, Vol. 3(1954), 2013. [52] C. A. Ariza, A. T. Fleury, C. J. Tormos, V. Petruk, S. Chawla, J. Oh, D. S. Sakaguchi, S. K. Mallapragada, “The Influence of Electric Fields on Hippocampal Neural Progenitor Cells”, Stem Cell Reviews and Reports, Vol. 6(4), pp. 585-600, 2010. [53] J. S. Park, K. Park, H. T. Moon, D. G. Woo, H. N. Yang, K. H. Park, “Electrical Pulsed Stimulation of Surfaces Homogeneously Coated with Gold Nanoparticles to Induce Neurite Outgrowth of PC12 cells”, Langmuir, Vol. 25(1), pp. 451-457, 2009. [54] S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, S. Hong, “Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene”, Advanced Materials, Vol. 23(36), pp. 263-267, 2011. [55] D. R. Kaplan, R. M. Stephens, “Neurotrophin signal transduction by the Trk receptor”, Journal of Neurobiology, Vol. 25(11), pp. 1404-1417, 1994. [56] A. Patapoutian, L. F. Reichardt, “Trk receptors: mediators of neurotrophin action”, Current Opinion in Neurobiology, Vol. 11(3), pp. 272-280, 2001. [57] D. Vaudry, P. J. Stork, P. Lazarovici, L. E. Eiden, “Signaling pathways for PC12 cell differentiation: making the right connections”, Science, Vol. 296(5573), pp. 1648-1649, 2002. [58] E. J. Huang, L. F. Reichardt, “Trk receptors: roles in neuronal signal transduction”, Annual Review of Biochemistry, Vol. 72, pp. 609-642, 2003. [59] L. J. Klesse, L. F. Parada, “Trks: signal transduction and intracellular pathways”, Microscopy Research and Technique, Vol. 45(4), pp. 210-216, 1999. [60] T. A. Brosenitsch, D. M. Kats, “Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels”, The Journal of Neuroscience, Vol. 21(8), pp. 2571-2579, 2001. [61] R. Zhao, L. Liu, A. R. Rittenhouse, “Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons”, The European Journal of Neuroscience, Vol. 25(4), pp. 1127-1135, 2007. [62] W. Wenjin, L. Wenchao, Z. Hao, L. Feng, W. Yan, S. Wodong, F. Xianqun, D. Wenlong, “Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways”, Cellular and Molecular Neurobiology, Vol. 31(3), pp. 459-467, 2011. [63] Y. J. Chang, C. M. Hsu, C. H. Lin, M. S. C. Lu, L. Chen, “Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling”, Biochimica et Biophysica Acta, Vol. 1830(8), pp. 4130-4136, 2013. [64] K. L. Elias, R. L. Price, T. J. Webster, “Enhanced functions of osteoblasts on nanometer diameter carbon fibers”, Biomaterials, Vol. 23(15), pp. 3279-3287, 2002. [65] J. L. McKenzie, M. C. Waid, R. Shi, T. J. Webster, “Decreased functions of astrocytes on carbon nanofiber materials”, Biomaterials, Vol. 25(7), pp. 1309-1317, 2004. [66] T. Khan, M. Dauzvardis, S. Sayers, “Carbon filament implants promote axonal growth across the transected rat spinal cord”, Brain Research, Vol. 541(1), pp. 139-145, 1991. [67] N. B. Chauhan, H. M. Figlewicz, T. Khan, “Carbon filaments direct the growth of postlesional plastic axons after spinal cord injury”, International Journal of Developmental Neuroscience, Vol. 17(3), pp. 255-264, 1999.
|