帳號:guest(3.133.145.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許亨瑞
作者(外文):Hsu, Heng Jui
論文名稱(中文):電刺激對成長於碳纖維上之PC12細胞的影響
論文名稱(外文):The effects of electrical stimulation on the growth of PC12 cells cultured on carbon fiber bundle
指導教授(中文):李紫原
戴念華
指導教授(外文):Lee, Chi Yuang
Tai, Nyan Hwa
口試委員(中文):張晃猷
陳盈潔
口試委員(外文):Lee, Chi Yuang
Tai, Nyan Hwa
Chang, Hwan You
Chen, Ying Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031703
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:109
中文關鍵詞:電刺激碳纖維
外文關鍵詞:carbon fiberelectrical stimulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:368
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的在測試碳纖維在神經移植的領域中是否具有發展性,實驗以PC12細胞作為模型,比較其在組織培養皿和碳纖維上之生長及分化情形,結果顯示,雖然碳纖維不具細胞毒性,PC12細胞也能順利貼附並成長於其表面,但碳纖維本身不具促進PC12細胞生長及分化的效果。
利用碳纖維導電性良好的特性,本研究設計一組通電裝置,對培養於碳纖維上之PC12細胞通以電刺激,探討透過碳纖維給予細胞電刺激所造成之影響。結果顯示,通以電壓為200 mV以上的電刺激會傷害細胞,電壓為100 mV的電刺激對細胞生存率不造成影響,但會使細胞神經突起沿著纖維方向生長。
對培養於碳纖維上,且以NGF誘導分化之PC12細胞通以不同時數的電刺激,結果發現電刺激無法促進神經突起的形成,但在神經突起的長度上,無電刺激組別的神經突起長度約為56 ± 4.8 μm,通連續24小時電刺激的組別,其神經突起的長度約為108 ± 6.8 μm,約為1.92倍,通連續48小時電刺激的組別,其神經突起的長度約為132 ± 5.1 μm,大約為2.35倍,此結果顯示電刺激的總時數越長,神經突起的長度則越長,證實在NGF的作用下,通電刺激對神經突起成長具有加成的效果。
The purpose of this study is to investigate the application of carbon fiber in neural implant. We used PC12 cells as a model, and compared the differences of proliferation and differentiation of the cells cultured in tissue cultured plates and on carbon fiber. The results revealed that although carbon fiber is a non-cytotoxic material which can be adopted as a substrate for normally proliferating PC12 cells to, however it cannot enhance the adhesion and proliferation of PC12 cells cultured on it.
Using the intrinsic property of high electrical conductivity of carbon fiber, we designed a device to provide the electrical stimulation to the PC12 cells cultured on carbon fiber and found that the electrical stimulation with potential over 200 mV is harmful to PC12 cells. The electrical stimulation with potential 100 mV makes no negative influence to the viability of PC12 cells, but can guide the neurites to outgrow along the carbon fibers.
Applying electrical stimulation to the NGF-induced differentiated PC12 cells cultured on carbon fiber, we found that electrical stimulation has very limited influence on the neurite formation, but it can enhance the elongation of neurites. Cells without electrical stimulation, the neurite length is 56 ± 4.8 μm μm, cells with 24 hours electrical stimulation, the neurite length is 108 ± 6.8 μm μm, about 1.92 times of the cells without electrical stimulation, and cells with 48 hours electrical stimulation, the neurite length is 132 ± 5.1 μm μm which is about 2.35 times of the cells without electrical stimulation. This results reveled that electrical stimulation has positive effect on neurtie growth with the addition of NGF.
第1章 緒論 1
1-1 神經系統 1
1-2 神經系統的退化 2
1-3 神經系統的修復 3
1-4 電刺激對神經細胞的影響 5
1-5 碳纖維 7
1-6 研究計畫 11
第2章 文獻回顧 21
2-1 細胞毒性 21
2-2 材料表面特性誘導細胞生長 23
2-3 電刺激促進細胞分化 25
2-4 人工神經束 29
2-5 碳纖維於生醫領域的應用 30
第3章 實驗方法 43
3-1大鼠腎上腺髓質嗜鉻細胞瘤細胞培養 43
3-1-1 細胞解凍 43
3-1-2 細胞繼代培養 46
3-2 通電裝置製作 49
3-2-1 碳纖維表面處理及分析 49
3-2-2 通電裝置製作 50
3-3 碳纖維對PC12細胞之影響 53
3-3-1 PC12細胞於碳纖維上之培養 53
3-3-2 碳纖維的細胞毒性分析 55
3-4電刺激對PC12細胞之影響 57
3-4-1 不同電壓值對PC12細胞生存率及分化率造成之影響 57
3-4-2 細胞分化 58
3-4-3 神經突起在碳纖維上之觀察 60
3-4-4 電刺激多寡對PC12細胞神經突起之影響 62
3-4-5 電刺激間歇性及總時數對PC12細胞神經突起之影響 63
3-4-6 電刺激加速PC12細胞神經突起之探討 64
3-4-7 長期電刺激對PC12細胞神經突起之影響 64
第四章 結果與討論 68
4-1 碳纖維表面分析 68
4-1-1 場發射掃描式電子顯微鏡觀察碳纖維表面形貌 68
4-1-2 傅立葉轉換紅外線光譜儀之分析結果 69
4-2 碳纖維對PC12細胞之影響 70
4-2-1 碳纖維對PC12細胞生長及分化的影響 70
4-2-2 碳纖維之細胞毒性測試 71
4-3 電刺激對PC12細胞之影響 72
4-3-1 不同電壓值對PC12細胞生存率及分化率造成之影響 72
4-3-2 碳纖維上通電刺激對PC12細胞神經突起生長方向之影響 73
4-3-3 電刺激多寡對PC12細胞神經突起之影響 75
4-3-4 電刺激間歇性及總時數對PC12細胞神經突起之影響 77
4-3-5 電刺激加速PC12細胞神經突起之探討 79
4-3-6 長期電刺激對PC12細胞神經突起之影響 79
第5章 結論 98
參考文獻 100
[1] K. Franze, J. Guck, “The biophysics of neuronal growth”, Reports on Progress in Physics, Vol. 73(9), 094601, 2010.
[2] P. Roussos, V. Haroutunian, “Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities”, frontiers in Cellular Neuroscience, Vol. 8(5), 2014.
[3] A. Mitra, B. Dey, “Therapeutic Interventions in Alzheimer Disease”, INTECH open science/open mind, Chap. 12, pp. 291-317, 2013.
[4] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E. M. Stadlan, “Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease”, Neurology, Vol. 34(7), pp. 939-945, 1984.
[5] B. L. Wolozin, A. Pruchnicki, D. W. Dickson, P. Davies, “A Neuronal Antigen in the Brains of Alzheimer Patients”, Science, Vol. 232(4750), pp. 648-650, 1986.
[6] V. Krishnamurthy, N. S. Issac, J. Natarajan, “Computational Identification of Alzheimer’s Disease Specific Transcription Factors using Microarray Gene Expression Data”, Journal of Proteomics & Bioinformatics, Vol. 2(12), pp. 505-508, 2009.
[7] Silver. J, J.H. Miller, “Regeneration beyond the glial scar”, Nat Rev Neurosci, Vol. 5(2), pp. 146-156, 2004.
[8] Seil, J. T. and T. J. Webster, “Electrically active nanomaterials as improved neural tissue regeneration scaffolds”, Wiley Interdiscip Rev Nanomed Nanobiotechnol, Vol. 2(6), pp.635-647, 2010.
[9] S. Strittmatter, “Spinal Cord Regeneration: Ready, Set, Nogo”, Eukaryon, Vol. 6(7), pp. 55-60, 2010.
[10] E. Detrait, C. S. Eddleman, S. Yoo, M. Fukuda, M. P. Nguyen, G. D. Bittner, H. M. Fishman, “Axolemmal repair requires proteins that mediate synaptic vesicle fusion”, Journal of Neurobiology, Vol. 44(4), pp. 382-391, 2000.
[11] N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, “Nervous Systems”, Biology/Edition 8, Chap. 49, 2007.
[12] W. A. Catterall, “Activation of the Action Potential Na+ Ionophore by Neurotoxins”, The Journal of Biological Chemistry, Vol. 252(23), pp. 8669-8676, 1997.
[13] N. Spruston, Y. Schiller, G. Stuart, B. Sakmann, “Activity-Dependent Action Potential Invasion and Calcium Influx into Hippocampal CA1 Dendrites”, Science, Vol. 268(14), pp. 297-300, 1995.
[14] C. L. Stanfield, “Nerve cells and electrical signaling”, Principle of Human Physiology/4th Edition, Chap. 7, pp. 166-195, 2010.
[15] J. S. Park, K. Park, H. T. Moon, D. G. Woo, H. N. Yang, K. H. Park, “Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of PC12 cells”, Langmuir, Vol. 25(1), pp. 451-457, 2009.
[16] K. Kimura, Y. Yanagida, T. Haruyama, E. Kobatake, M. Aizawa, “Gene expression in the electrically stimulated differentiation of PC12 cells”, J. Biotechnol, Vol. 63(1), pp. 55-65, 1998.
[17] M. Yamada, K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, T. Kondo, “Electrical stimulation modulates fate determination of differentiating embryonic stem cells”, Stem cells, Vol. 25(3), pp. 562-570, 2007.
[18] S. Manivannan, S. Terakawa, “Rapid sprouting of filopodia in nerve terminals of chromaffin cells, PC12 cells, and dorsal root neurons induced by electrical stimulation”, J. Neurosci. Vol. 14(10), pp. 5917-5928, 2007.
[19] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[20] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs”, Journal of the American Chemical Society, Vol. 130(33), pp. 10876-10877, 2008.
[21] M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of focal heat destruction of liver tumors”, Journal of Surgical Research, Vol. 127(2), pp. 208-223, 2005.
[22] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy”, Nano Letters, Vol. 10(9), pp. 3318-3323, 2010.
[23] Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, K. M. Arsikin, S. P. Jovanovic, A. C. Pantovic, M. D. Dramicanin, and V. S. Trajkovic, “ In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes”, Biomaterials, Vol. 32(4), pp. 1121-1129, 2011.
[24] C. M. Voge, J. P. Stegemann, “Carbon nanotubes in neural interfacing applications”, Journal of Neural Engineering, Vol. 8, 011001, 2011.
[25] B. S. Harrison, A. Atala, “Carbon nanotube applications for tissue engineering”, Biomaterials, Vol. 28(2), pp. 344-353, 2007.
[26] A. Abarrategi, M. C. Gutierrez, . Moreno-Vicente, M. J. Hortiguela, V. Ramos, J. L. Lopez-Lacomba, M. L. Ferrer, F. del Monte, “Multiwall carbon nanotube scaffolds for tissue engineering purposes”, Biomaterials, Vol. 29(1), pp. 94-102, 2008.
[27] Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao, “Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites”, PNAS, Vol. 110(30), pp. 12295-12300, 2013.
[28] H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, “Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates”, Angewandte Chemie, Vol. 118(40), pp. 6828-6832, 2006.
[29] D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb, “Comparative Pulmonary Toxicity Assessment of Single-wall Carbon Nanotubes in Rats”, Toxicological Sciences, Vol. 77(1), pp. 117-125, 2003.
[30] K. Pulskamp, S. Diabate, H. F. Krug, “Carbon nantubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants”, Toxicology Letters, Vol. 168, pp. 58-74, 2007.
[31] J. P. McGann, M. Zhong, E. K. Kim, S. Natesakhawat, M. Jaroniec, J. F. Whitacre, K. Matyjaszewski, T. Kowalewski, “Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro) chemical Performance”, Macromolecular Chemistry and Physics, Vol. 213(10), pp. 1078-1090, 2012.
[32] J. L. Ponchon, R. Cespuglio, F. Gonon, M. Jouvet, J. F. Pujol, “Normal Pulse Polarography with Carbon Fiber Electrodes for in Vitro and in Vivo Determination of Catecholamines”, Analytical Chemistry, Vol. 51(9), pp. 1483-1486, 1979.
[33] K. T. Kawagoe, J. A. Jankowski, R. M. Wightman, “Etched Carbon-Fiber Electrodes as Amperometric Detectors of Catecholamine Secretion from Isolated Biological Cells”, Analytical Chemistry, Vol. 63(15), pp. 1589-1594, 1991.
[34] J. W. Mo, B. Ogorevc, “Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly(1,2-phenylenediamine)-Coated Carbon Fiber”, Analytical Chemistry, Vol. 73(6), pp. 1196-1202, 2001.
[35] B. J. Venton, K. P. Troyer, R. M. Wightman, “Response Times of Carbon Fiber Microelectrodes to Dynamic Changes in Catecholamine Concentration”, Analytical Chemistry, Vol. 74(3), pp. 539-546, 2002.
[36] R. L. Price, M. C. Waid, K. M. Haberstroh, T. J. Webster, “Selective bone cell adhesion on formulations containing carbon nanofibers”, Biomaterials, Vol. 24, pp. 1877-1887, 2003.
[37] G. E. Sidoli, P. A. King, D. J. Setchell, “An in vitro evaluation of a carbon fiber-based post and core system”, The Journal of Prosthetic Dentistry, Vol. 78(1), pp. 5-9, 1997.
[38] Y. J. Huang, H. C. Wu, N. H. Tai, T. W. Wang, “Carbon Nanotube Rope with Electrical Stimulation Promotes the Differentiation and Maturity of Neural Stem Cells”, Small, Vol. 8(18), pp. 2869-2877, 2012.
[39] J. F. R. Kerr, A. H. Wyline, A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics”, British Journal of Cancer, Vol. 26(4), pp.239-257,1972.
[40] N. K. Kuan, E. Passaro, “Apoptosis: programmed cell death”, Archives of Surgery, Vol. 133(7), pp. 773-775, 1998.
[41] C. Bussy, H. Ali-Boucetta, K. Kostarelos, “Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes”, Accounts of chemical research, Vol. 46(3), pp. 692-701, 2013.
[42] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A. S. Biris, “Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells”, ACS Nano, Vol. 4(6), pp. 3181-3186, 2010.
[43] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, R. L. Hunter, “A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks”, Critical Reviews in Toxicology, Vol. 36, pp. 189-217, 2006.
[44] N. Li, X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, L. Liu, G. Jin, M. Tang, G. Cheng, “The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates”, Biomaterials, Vol. 32(35), pp. 9374-9382, 2011.
[45] H. G. Craighead, C. D. James, A. M. P. Turner, “Chemical and topographical patterning for directed cell attachment”, Current Opinion in Solid State and Materials Science, Vol. 5(2), pp. 177-184, 2001.
[46] D. A. Stenger, C. J. Pike, J. J. Hickman, C. W. Cotman, “Surface determinants of neuronal survival and growth on self-assembled monolayers in culture”, Brain Research, Vol. 630(1), pp. 136-147, 1993.
[47] L. A. Cyster, D. M. Grant, K. G. Parker, T. L. Parker, “The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells”, Biomolecular Engineering, Vol. 19(2), pp. 171-175, 2002.
[48] S. P. Massia, M. M. Holecko, G. R. Ehteshami, “In vitro assessment of bioactive coatings for neural implant applications”, Journal of Biomedical Materials Research Part A, Vol. 68(1), pp. 177-186, 2004.
[49] E. B. Malarkey, K. A. Fisher, E. Bekyarova, W. Liu, R. C. Haddon, V. Parpura, “Conductive Single-Walled Carbon Nanotube Substrates Modulate Neuronal Growth”, Nano Letters, Vol. 9(1), pp. 264-268, 2009.
[50] H. Hu, Y. Ni, V. Montana, R. C. Hoddon, V. Parpura, “Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth”, Nano Letters, Vol. 4(3), pp. 507-511, 2004.
[51] M. Lorenzoni, F. Brandi, S. Dante, A. Giugni, B. Torre, “Simple and effective graphene laser processing for neuron patterning application”, Scientific Reports, Vol. 3(1954), 2013.
[52] C. A. Ariza, A. T. Fleury, C. J. Tormos, V. Petruk, S. Chawla, J. Oh, D. S. Sakaguchi, S. K. Mallapragada, “The Influence of Electric Fields on Hippocampal Neural Progenitor Cells”, Stem Cell Reviews and Reports, Vol. 6(4), pp. 585-600, 2010.
[53] J. S. Park, K. Park, H. T. Moon, D. G. Woo, H. N. Yang, K. H. Park, “Electrical Pulsed Stimulation of Surfaces Homogeneously Coated with Gold Nanoparticles to Induce Neurite Outgrowth of PC12 cells”, Langmuir, Vol. 25(1), pp. 451-457, 2009.
[54] S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, S. Hong, “Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene”, Advanced Materials, Vol. 23(36), pp. 263-267, 2011.
[55] D. R. Kaplan, R. M. Stephens, “Neurotrophin signal transduction by the Trk receptor”, Journal of Neurobiology, Vol. 25(11), pp. 1404-1417, 1994.
[56] A. Patapoutian, L. F. Reichardt, “Trk receptors: mediators of neurotrophin action”, Current Opinion in Neurobiology, Vol. 11(3), pp. 272-280, 2001.
[57] D. Vaudry, P. J. Stork, P. Lazarovici, L. E. Eiden, “Signaling pathways for PC12 cell differentiation: making the right connections”, Science, Vol. 296(5573), pp. 1648-1649, 2002.
[58] E. J. Huang, L. F. Reichardt, “Trk receptors: roles in neuronal signal transduction”, Annual Review of Biochemistry, Vol. 72, pp. 609-642, 2003.
[59] L. J. Klesse, L. F. Parada, “Trks: signal transduction and intracellular pathways”, Microscopy Research and Technique, Vol. 45(4), pp. 210-216, 1999.
[60] T. A. Brosenitsch, D. M. Kats, “Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels”, The Journal of Neuroscience, Vol. 21(8), pp. 2571-2579, 2001.
[61] R. Zhao, L. Liu, A. R. Rittenhouse, “Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons”, The European Journal of Neuroscience, Vol. 25(4), pp. 1127-1135, 2007.
[62] W. Wenjin, L. Wenchao, Z. Hao, L. Feng, W. Yan, S. Wodong, F. Xianqun, D. Wenlong, “Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways”, Cellular and Molecular Neurobiology, Vol. 31(3), pp. 459-467, 2011.
[63] Y. J. Chang, C. M. Hsu, C. H. Lin, M. S. C. Lu, L. Chen, “Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling”, Biochimica et Biophysica Acta, Vol. 1830(8), pp. 4130-4136, 2013.
[64] K. L. Elias, R. L. Price, T. J. Webster, “Enhanced functions of osteoblasts on nanometer diameter carbon fibers”, Biomaterials, Vol. 23(15), pp. 3279-3287, 2002.
[65] J. L. McKenzie, M. C. Waid, R. Shi, T. J. Webster, “Decreased functions of astrocytes on carbon nanofiber materials”, Biomaterials, Vol. 25(7), pp. 1309-1317, 2004.
[66] T. Khan, M. Dauzvardis, S. Sayers, “Carbon filament implants promote axonal growth across the transected rat spinal cord”, Brain Research, Vol. 541(1), pp. 139-145, 1991.
[67] N. B. Chauhan, H. M. Figlewicz, T. Khan, “Carbon filaments direct the growth of postlesional plastic axons after spinal cord injury”, International Journal of Developmental Neuroscience, Vol. 17(3), pp. 255-264, 1999.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *